
SED 1401 Transcript

EPISODE 1401

[INTRODUCTION]

[00:00:00] KP: If you haven't encountered a data quality problem, then you haven't yet worked 
on a large enough project. Invariably, a gap exists between the state of raw data in what an 
analyst or machine learning engineer needs to solve their problem. So many organizations 
needing to automate data preparation workflows look to Trifecta as a solution. In this episode, I 
interview Joseph Hellerstein, professor of computer science at UC Berkeley and cofounder at 
Trifecta. 

[INTERVIEW]

[00:00:30] KP: Joe, welcome to Software Engineering Daily.

[00:00:32] JH: Thanks, it's great to be here.

[00:00:34] KP: Can you tell me a little bit about both your academic and industry background?

[00:00:38] JH: Yeah, happy to. So I go back originally as a database guy. My first job out of 
college was working at IBM Research, and the stuff I did back then in the early 90s rolled out 
into IBM Db2 at some point. So like roots in software engineering, relational databases. Did a 
PhD part at Berkeley, part at Wisconsin with Mike Stonebreaker, if you know his name, founder 
of the Database Field. And Jeff Notton, who's still around and plays a research role at Google. 

Thereafter, I went and joined the faculty as a professor at UC Berkeley. So I've been a professor 
of computer science at UC Berkeley since 1995 working on all things, data, systems, machine 
learning, human computer interaction around data. So really anything that touches on data stuff 
and systems around data. 

In 2012, we took a research project off campus called Data Wrangler. And we started a 
company called Trifecta. So the Data Wrangling project and the Trifecta company are trying to 
address the question of can folks with good computer science allow people who aren't computer 

© 2021 Software Engineering Daily 1



SED 1401 Transcript

scientists, who aren't software engineers, to do their own data engineering? To be able to get 
that data to transform it in the form they need it so that they can do their analytics and their 
modeling. And so Trifacta has been a journey of trying to get empathy with folks who are data 
engineers, folks who are data analysts, and build out computer tools that can empower them.

[00:02:03] KP: So that persona, when I think of the data analysts, maybe someone just getting 
started, they're probably pretty proficient at Excel. What do they level up to when they switch to 
Trifecta?

[00:02:14] JH: So that's a really, really awesome insight, because Excel is an incredibly 
powerful computational tool that those of us who are trained to write C++, and Rust, and 
whatnot, don't always appreciate. Excel is a rich programming model. You can do lots of stuff 
with it, and people do. But it's got a very sort of two-dimensional data model where you can 
reference cells, and you can reference them relatively, and you can reference them sort of 
spatially. And those are your variables. And then you can write code on top of that. So folks who 
are master Excel users are often like pretty smart. They're real sharp. 

What happens when they move to learn looking at bigger datasets is they have to stop thinking 
positionally, because data moves around, right? If you have terabytes of data, you're not going 
to think of it as a grid with row A and column three, or whatever, row one and column C. So you 
have to start thinking of collection types, right? You have to start thinking about programming in 
terms of collections of data, which is where languages like SQL and so on, Excel, so to speak. 
So that transition can be tricky for folks coming from Excel. 

But sort of the bridge there, people typically start with Excel, and then they end up in BI tools 
like Tableau where they're doing charting, because Excel’s charting only goes so far. And at that 
point, they start thinking about mappings of data to bars and stuff like that. And they start 
thinking kind of in these collection-oriented ways. And that often leads them to SQL, because 
oftentimes, you're building charts on top of relational databases. So that's been kind of the 
traditional arc of how do you get from Excel to more programming. Where Trifacta comes in is 
trying to bridge in that gap, particularly when the work you have to do the data is pretty complex. 

© 2021 Software Engineering Daily 2



SED 1401 Transcript

So in a modern data environment, you tend to have data from lots of sources. And it comes in a 
million different formats. It's often missing information. It often has duplicated information 
represented in more than one way, like International Business Machines versus IBM. And so 
getting in there and really cleaning up that data is not a single simple SQL query. It's a whole 
set. It's a whole sequence of transformations. And so doing that in a rich environment often 
involves a little bit of visualization to keep in mind and be able to see if you're making progress. 
Is the data getting better? And a little bit of light coding. And the way that you do that in Trifecta 
is very visual. And then you have AI assistants behind the scenes helping you to figure out what 
your next steps would be, and then showing you what those next steps would do to the data.

[00:04:39] KP: Could you elaborate on those AI assistants? How do they help me?

[00:04:43] JH: Yeah. So all over the place, let's start with the simplest thing, which most tools 
for data cleaning do a little bit of, which is I just loaded, let's say, a CSV file, and somebody is 
going to have to figure out what the data types are in the columns. Why? Well, if you're a loaded 
database, you have to. But more to the point, if you're going to give me like a bar chart for each 
column that tells me what this column looks like, you kind of have to know like is this numerical 
data and it's ordered? Or is it categorical data? It's names, and it's not ordered. And we need 
bars from like most frequent to least frequent. So even just getting your eyeballs on the data, 
you kind of need to know something about its data types. And then you might want richer 
models like, “Oh, these are credit cards, or these are social security numbers, or these are drug 
names from my catalogue of drugs, because I'm a drug company,” right? So typing data is one 
kind of place where a little bit of inference, a little bit of AI can help. 

Another really common example, I missing information in a column. And I want to fill it in with 
the most likely values. It's called data imputation. So that's a sort of sequential model that you 
try to figure out if I've got a sequence of numbers that I'm missing some things. What should I 
put in the holes? So you can use a variety of sequential models to do that. So data imputation is 
another. 

So a third example is what we call entity resolution, and that's this issue where you have 
different names for the same thing, or possibly the same names for different things. So for 
example, IBM International Business Machines, and the Indiana Beer Manufacturer, right? And 

© 2021 Software Engineering Daily 3



SED 1401 Transcript

you need to figure out which things are which. So that's another kind of modeling or AI 
technique that you'd use in one of these tools. And there's a dozen more. 

One that we use a lot in Trifecta is what we like to call predictive interaction. So this is actually 
how you interact with the tool graphically. In Excel, if you double click on a cell, it's because you 
want to edit it. In Trifecta, if you point at almost anything on the screen, whether it's a chart, or a 
value in Excel, we give you a list of possible interpretations of what that might mean. So you 
click on a column, and maybe that column is missing a lot of data. We might say, “Hey, are you 
trying to fill in the data that's missing from this column? Or is it that you want to change the data 
type for this column? Or is it that you want to delete this column?” 

And the way that we show that to the user is we show them a panel of the possible things that 
would happen on the screen if you chose these different things. So you can see what would 
happen if you chose each of these different choices. And it sort of speeds you along your way. 
So you don’t have to try out 17 things. You can see in a rank list, essentially, 17 possible things 
you might do to this column just by clicking on the column. And it's the same for clicking on a 
bar in a bar chart, or clicking on a cell in the spreadsheet. You get suggestions for what it is that, 
because you highlighted this feature, you might want to do next.

[00:07:17] KP: Well, the common acronym most people use is ETL, extract, transform and load. 
Although I think there's some debate about the proper order there. Where does Trifecta fit in the 
typical data pipeline in architecture of a software company?

[00:07:33] JH: So let's start with E and L. Traditionally, we had operational data stores. Think of 
transactional databases. This is back in the 90s when the ETL moniker came up. So you do 
transactional databases. And then you have your analytics platform, which was built on your 
data warehouse. You need to extract data from your transactional databases. Typically, there 
was more than one. And you need to integrate it and load it into your data warehouse for 
analytics. Much has changed since the 90s. The first thing that's changed is you don't kind of 
have to necessarily have this IFK operational databases and one data warehouse. Typically, 
you have a whole bunch of stuff going on. You have data coming from all over the place. You 
have different people who are trying to interact with that data. 

© 2021 Software Engineering Daily 4



SED 1401 Transcript

Another thing that's changed a lot since the 90s is that we're in the cloud now. And you can put 
your data almost anywhere. You can put it in cheap storage, like block storage, like S3 at 
Amazon, for example. Or you can register the data with a cloud data warehouse, like a 
Snowflake, or Redshift, or BigQuery. And you can have that data either ingested into the data 
warehouse, or you can leave it in black storage raw, and have the database interpreted on 
demand when you run queries. 

So what this means is that transform part, the T, gets to be done kind of however you want. You 
can do it with the databases query engine, or you can do it with programmer tools like Python 
Pandas, or you can do it with like big data frameworks like Spark. There's lots of ways you can 
do T, right? And so the traditional ETL was extract from the operational data warehouse by a 
specialized system to do T, like an ETL system, and then load the data warehouse. Today, it's 
much more fluid. It's much more like there's going to be sources, there's going to be 
destinations, and there's lots of ways to do transformation. 

Trifecta fits into the world by being flexible. And so we can do what's called ELT, where you do 
extraction, and you load a SQL data warehouse like Snowflake. And the transformation comes 
third, because the raw data is now in the data warehouse. And you're doing SQL for 
transforming it to your final state. And if you want to do that pattern, you use Trifecta’s user 
interface and Trifacta will generate the SQL transformations. You can also choose to do a more 
data lake style where you take the data and you dump it into blob storage like S3, dump it into a 
data lake. And then you can use programmer tools like Spark to transform the data. And in that 
environment, Trifecta’s user interface will generate Spark code for you if you like and run the 
transformation before loading the data warehouse using Spark. 

So we are basically an authoring environment, a monitoring environment, and a runtime 
environment that would kind of keep tabs on what you need to do and allow you to specify what 
you want to do. The execution engine and the order of weather happens before E, after E, after 
L, that's kind of up to you based on the infrastructure that you run.

[00:10:17] KP: When you look at the titles of the people that engage with the platform, who's 
the typical operator? What job profession are they?

© 2021 Software Engineering Daily 5



SED 1401 Transcript

[00:10:24] JH: Yeah, so it's broad. But let me say that Trifecta starts out with the hypothesis that 
we should allow lots of people to do data transformation and data engineering, simply because 
there aren't enough highly technical people to do it, relative to the number of people who want 
to work with data. So if you look at all those super users of Excel, if you look at all those users of 
BI tools like Tableau, if you look at all of the people who want to use AutoML to build simple 
models, many of those people are not programmers. Many of those people are not even data 
engineers. They’re data scientists, they’re analysts. They have these other role titles. And we 
need to empower those people, because darn it, the folks who can handwrite the code are too 
busy to do it for everybody else. 

So Trifacta is expressly in the business of using computer science, visualization, AI, etc., to 
empower all those folks to be able to do self-service data engineering, while also integrating 
with the folks who are the operational developer-centric folks, the data engineers, the software 
engineers. What that means is that in addition to the visual interfaces, we need to make sure 
that what we're generating at the end is code that can be checked into Git, code that can be 
managed, code that folks can edit if they're code types. 

You hear the phrase democratization of data a lot. And for me, what democratization means is 
that you’re bringing lots of different kinds of people together. I think, traditionally, people use it in 
this space to mean democratization is to make something easy so that people who aren't 
technical can use it. I don't think that's right. It's about bringing people who are sort of data and 
computer folks natively, and people who are application domain experts natively, and allowing 
them to work together, alright? So it's both ease of use and sort of the programmability, the 
operationalization. All that stuff needs to be served. So I think that's the future of data 
engineering particularly in the cloud where everything's easy to get going on. And Trifecta is 
squarely in the business of trying to serve that multiplicity of users.

[00:12:21] KP: I'm going to throw some buzzwords at you. We got no-code, low-code, 
serverless. How does Trifecta square against these ideas?

[00:12:29] JH: Well, architecturally, Trifecta is serverless. So let's start there. When Trifacta is 
running in the cloud, you don't need to know how many instances of it are running. You don't 
provision a Trifacta server in the cloud. You just sign up and use it like software as a service. 

© 2021 Software Engineering Daily 6



SED 1401 Transcript

And for the user, the fact that it's serverless, is more or less basically is use-based. The pricing 
is not making you set up servers and rent them on long term. So it is serverless. 

In terms of no-code, low-code, it is a low-code environment. But it's also an environment in 
which code is being generated and can be manipulated and edited. And this speaks to my last 
point. Low-code users who would prefer to interact graphically are very empowered in this tool 
and given a lot of hints. Folks who like to code can see code, they can edit code, while they're 
also getting tons of visual feedback from the tool about like, “Alright, you wrote this line of code. 
Here's what things look like now in your data.” So that interaction with the visual is available to 
real coders and it's also available to low coders. And we try to span that gap. So I would say 
Trifecta is unique in being a powerful low-code environment for data transformation that also 
embraces the idea that coders are part of the team.

[00:13:37] KP: So I see a lot of opportunities as I'm working on my data pipeline. But if it's just a 
data pipeline, that's kind of set it and forget it. I don't want to know about it after I built it, unless 
there's a problem. It sounds like Trifecta can be more of an analytical workbench for me as well. 
Could you describe what the day-to-day is like for a lot of users in that regard?

[00:13:56] JH: Yeah. So day-to-day, there's no such thing as real set and forget with data 
pipelines, because as you alluded to, you need to keep track of whether it's doing what you 
expect it to be doing. So daily data quality, for example, is a really important piece of owning a 
data pipeline. And so part of using Trifacta is the ability to do data quality in rich intuitive ways so 
that you can get your eyeballs on things and quickly see if they're working or not working, 
establish data quality rules, check how much drift from what you want to expect it in the data, 
etc. 

So part of the operationalization aspects of Trifecta are data quality, and scheduling, and all 
those things that make – That allow you to pretend you're going to forget it, even though, 
honestly, you said it, and then you keep an eye on it over time. And then the other thing that's 
important to note is that everybody's data environment is on the moving dynamic. People are 
always getting new datasets, new use cases. And so we rarely see customers who set and 
forget in any realistic way, even with respect to authoring transformations. Sort of a constant 
maintenance and constant continuous development process really around data pipelines.

© 2021 Software Engineering Daily 7



SED 1401 Transcript

[00:14:58] KP: If I'm maybe a slightly more sophisticated user with a computer science 
background who still just wants a tool to be efficient, how much fiddling of knobs do I get to do 
and things like that when it comes to the imputation, or the entity resolution, and these sorts of 
steps?

[00:15:14] JH: That's a good question. So from a transformation language perspective, you can 
do as much fiddling as you want. So if you want to write your own SQL queries and string them 
together, you can absolutely do that. If you want to program in Trifecta’s internal domain specific 
language called Wrangle, you can write your own Wrangle and paste it into the tool and check it 
into GitHub and so on. So all that stuff is very much in the hands of the developer in a way that 
any coding tool would allow. So you can see it as a super-duper IDE if you like. 

As regards some of the specific models we use, like our entity resolution models, or our type 
induction models, those are more or less extensible given the model. And so it depends. So for 
example, the entity resolution model allows you to choose your similarity metric, and you're 
clustering strengths and variety of parameters in the model, if you're familiar with that stuff. Our 
type induction model allows you to register your own dictionary. So if you have a list of your 
vendors’ names, that could be a data type in your system that you can register. If you have a 
regex for what your customer IDs look like, that's a data type you can register. And then the 
system will use that in the model to induce like, “Oh, I think this column is of type your 
customer.” 

For all the models, we've tried to make them extensible. But AI modeling is an art and a science 
both, and some of these models may or may not suit the use case. So another really important 
part of Trifecta is it's very API-driven. If you want to integrate Trifacta into a longer pipeline with 
other tools, you can absolutely do that. And we have tons of customers who use Airflow and 
other things to kind of put Trifecta into a pipeline and then step out of Trifecta to call out to 
external code and then jump back in.

[00:16:44] KP: Are there any customer stories or use cases you can share about Trifecta in 
action?

© 2021 Software Engineering Daily 8



SED 1401 Transcript

[00:16:50] JH: Yeah, I mean, my favorite use cases recently have to do with COVID-19. So the 
US Center for Disease Control, the CDC, has been using Trifacta to understand kind of how 
outbreaks and transmission chains spread. So they're using Trifacta to automate your time 
consuming labor intensive work of stuff like entity resolution, stuff like date cleaning, things like 
that. So in all these examples, there's a myriad of dirty work that trifecta is helping with. So CDC 
is one example that we're super proud of that they're using Trifacta to help map COVID. 

Similarly, at the University of Oxford, they have something called the Infectious Diseases Data 
Observatory. It's one of the largest international collections of clinical data for COVID-19. And 
they're using Trifacta to rationalize this data that's coming in from spreadsheets and packages 
and a whole bunch of other sources. And yet a third one is Genomics England, which has been 
looking at the genomic spine patients who've been diagnosed with asymptomatic and long haul 
COVID and so on. And they also are cleaning up multiple data streams using Trifacta. So that's 
just one sector around healthcare specifically in COVID. Obviously, we have customers across 
multiple sectors, because data is such a pervasive thing. So in banking, in pharma in nonprofits 
that are doing things like environmental work, just all over the place, we have use cases. But I 
love the COVID use cases, because they're so personal right now.

[00:18:10] KP: What sorts of insights do people gain from the projects?

[00:18:14] JH: I mean, all kinds of things, right? Because what's happening is once you clean 
up the data, then you do your downstream analytics. So sometimes were being used to build 
charts that scientists to look at. Sometimes were being used to build clean rosters of data. A 
favorite example, there is a firm called Nation Builder that took voter rolls in the United States 
from all the counties and all the states in the US to build out voter rolls for the entire country that 
were normalized. And there they were comprehensively building a dataset that was clean. 

So depending on your downstream use, you might be generating like a reference data set. You 
might be generating charts. You might be training an AI model. We see that quite a lot too, 
where you're doing essentially feature engineering with Trifecta. So there's lots of downstream 
use cases that follow from the work of data engineering.

© 2021 Software Engineering Daily 9



SED 1401 Transcript

[00:18:56] KP: a lot of the data that flows into our systems was either put there by a data 
engineer, or through a process created by a software engineer. And data quality isn't always 
paramount as the value for someone like that. Sometimes it's a person worrying more about 
encodings, and quality, and how to get the throughput fast enough, and all this sort of thing, 
which can be one of the sources of some of the data quality issues we might face. Not to say 
that those two roles couldn't be the champion bringing Trifacta in house. But I guess that's my 
core question. When an organization starts to adopt your solution, how do they get in the doors? 
Who's the first customer?

[00:19:32] JH: That's interesting. I don't want to throw too much shade on software engineers, 
having been trained as one myself. I got to say that like there's a lot of mindsets that you can 
bring to data to build quality pipelines. And it has multiple aspects including the operational 
concerns of kind of the software engineering. 

Having said that, Trifecta, because it's sort of positioned as being a graphics forward tool, tends 
to come in through the data scientist, the data analyst, and the data engineer. And in the data 
engineering space, it's the less programmy engineers who tends to go for it first. 

The primary issue here that I see is that software engineers are not trained to look at the data all 
the time. We have a tendency to sit down, write a lot of code, debug or write unit tests. But we 
don't tend to stop and say, “Hey, does the data look right at line 12? Does the data look great at 
line 14?” Because guess what? Our tools make it really hard to draw a chart. You have to write 
another little program each time to write a chart. 

So if you look at people's Jupyter notebooks, data scientists, there's long cells that are just 
generate a chart. Trifacta always has a chart in front of you. Every time you write a single line of 
code, the charts change to reflect what that line of code did. And I believe this is super important 
not just for data analysts, but for software engineers, for hardcore programmers, to get that 
continuous visual feedback about their data.

[00:20:49] KP: I’d love to talk a little bit as well about your work investigating bias in the criminal 
justice system. Can you give me the high level? What's the nature of what you're doing?

© 2021 Software Engineering Daily 10



SED 1401 Transcript

[00:20:59] JH: Yeah. So we have a project at UC Berkeley. This is actually separate from 
Trifecta entirely. We're building a lab at UC Berkeley called the EPIC Data Lab, which stands for 
effective programming interaction and computing on data. But mostly, it's a backronym, because 
we thought it was epic. And I'm working with some colleagues in human computer interaction, in 
program synthesis, which is a sort of AI-oriented branch of programming languages that 
generates code. And we're looking at Trifacta-like problems. And the context we're looking at it 
in is a context that came to us on campus from the Innocence Project, which is a nonprofit that's 
trying to make sure that innocent people don't go to jail, and from the National Association of 
Criminal Defense Lawyers, NACDL. 

So those folks are interested in making sure that the justice system works. And what that entails 
is that the prosecution and the defense both make the best case and the jury and the judge 
decide on the results and the sentencing. Now, if one of those sides doesn't have access to the 
same sort of tools and data that the other side does, the justice system doesn't work. And we're 
in a state right now where prosecution tends to have more access to technology than defense. 

So these defense lawyers are interested in finding ways that they can use data to do their side 
of the job. And in particular, this has come up, for instance, with police misconduct. So when you 
have someone that you're trying to defend who's going on the stand, police evidence is 
considered to be truth, unless you can discredit the police officer on the stand. Otherwise, it's 
taken into the record as truth. 

And so, for instance, if you have cops with a history of doing wrong stuff, you want to know that 
that cop is that person you think it is. So if you have Officer Smith who's making a statement 
about what they saw, but it turns out that Officer Smith was discredited in a previous case, in a 
previous like different jurisdiction, he may have gotten let go of that police force, gotten rehired 
in a new county, and you need to establish it's the same Officer Smith. So it's exactly entity 
resolution is one of their problems. 

But generally speaking, they just have tons of paperwork and data that they're trying to sift 
through, and they are lawyers, and they're underpaid, and they are in a rush. So what can we 
do to help them look at scans of police document? Look at body cam data from cops? Look at 

© 2021 Software Engineering Daily 11



SED 1401 Transcript

911 call records, and quickly get to the bottom of are the officers in this case to be trusted or 
not? 

And so they came to Berkeley as a place where state of California just has a state bill that 
releases a lot of this information, this public information. And they're trying to build up a capacity 
to let lawyers do their own data analytics and data transformation. And the data ingest problem 
is a big one for them. And it's multimedia and kind of all the kinds of new stuff we're looking at 
with different formats.

[00:23:37] KP: There's a lot of rich data set you described there. The body cam is a computer 
vision problem. The transcript data is a natural language processing problem. And we've seen 
some pretty impressive advancements in those areas over the last decade, yet nothing's 
passing the Turing Test quite yet. What is the state of the art? And what kind of questions are 
reasonable to ask of the data today?

[00:23:59] JH: I'm so glad you asked the question in the terms you did. Because AI is 
absolutely not a panacea, even though we're seeing enormous progress. And what that means 
is that we have to look at AI as an assistive technology in human workflows. If we're going to 
take body cam data from officers, and we're going to give it to an algorithm, if the algorithm just 
says good cop or bad cop, you can't really work with that. That's not trustworthy. What you need 
to do is you need to have something more like the algorithm comes back, it tags moments in a 
video. It says, “Here's moments where there seems to be excessive use of force. You should 
review,” right? So that's just a simple example where the AI is actually in service of making the 
human go faster in scrubbing through this hours and hours of videotape. 

And of course, that's fraught with ethical concerns too about recall and precision. But at least 
the agency is in the hands of people. And I believe that it's going to be a long, long time before 
AI technology is such that we'll just say, “Hey, algorithm, figure stuff out for us on the large.” 
Almost always going to be human in the loop AI is embedded in assistive tools. 

So the spirit of what Trifacta has built, which is AI in the spirit of cleaning up kind of tabular, 
semi-structured and structured data, we're going to see more and more of that as we start 
looking at new data types that we have to use AI to do feature extraction, like audio, like video, 

© 2021 Software Engineering Daily 12



SED 1401 Transcript

like OCR, like natural language. But I absolutely agree with you. Like this is not going to be 
magic. This is going to be better tools with a give and take between human intelligence and 
artificial intelligence.

[00:25:28] KP: And when you think about that intersection, for people who are really want to 
focus their careers there, do you have any advice for what the opportunities are?

[00:25:35] JH: Yes, I do. And my strong advice to folks – And I say this as a Berkeley professor, 
as well as someone who's in the industry, is don't focus myopically on AI. Focus on the human 
computer interaction around techniques like AI, because that is where the real impact is. 
Certainly, true in products. You can't take AI techniques off campus and just sell them. They're 
just pattern recognizers. They don't actually solve a problem to completion. So everybody who 
starts a company realizes this at some point. But you can easily go and get a degree in AI and 
think that you're solving the world's problems only to have that cold water in your face when you 
take it out into the real world. 

And I hear over and over from my colleagues who are full time AI researchers that this human in 
the loop aspects of AI are the next frontier. So I strongly encourage people to think about how 
does AI fit into a workflow? How does human perception and computer perception complement 
each other? What are people good at? What are computers and algorithms and models good 
at? Those are deep and interesting questions that lead to really useful outcomes.

[00:26:36] KP: Well, we touched briefly on your time working on Db2, when database systems 
were these monoliths centralized. And that model still exist. But we also live in this distributed 
world. You'd alluded to some of these upcoming data sets and things like that. I'm curious where 
you see Trifacta going in the next few years. Are there any things that you can share on the 
planning or horizon? Or how will the product evolve as data evolves?

[00:27:00] JH: It's a great question. Well, I do think that more and more of our databases, 
obviously, will be in the cloud rather than on-premises. And it's been a big focus of Trifecta over 
the last few years to make sure that we are a cloud native product. And we are. We're offered 
on all three of the major public clouds in the Western hemisphere. And Google has chosen us 
as their preferred data platform. It's called Google Data Prep by Trifacta. 

© 2021 Software Engineering Daily 13



SED 1401 Transcript

So being cloud native is like absolutely required. At which point, distributions are given, right? 
The cloud is not one computer. Cloud is lots of computers. So it's absolutely distributed data, 
distributed compute. And we've been working on that for some time. 

Having said that, where I see things going forward is this definition of democratization is 
spanning developers as well as subject matter experts. So think developers and business users, 
if you will. That spectrum is, I think, squarely where we are focusing over the next few years, is 
in making sure that we're serving not only the Excel spreadsheet types, but also the Python 
programmer, also the SQL programmer, also the pipeline management ops person, that all 
those personas are democratize, which is to say they all have a seat at the table in this tool 
chain. They get to bring their languages. They get to bring their favorite tools, and interoperate 
in a smooth way that doesn't lock people out. And that's actually not as simple as it sounds. It's 
actually pretty – Takes a lot of finesse to build an ecosystem where those folks can work well 
together. And that's something that we're laser focused on.

[00:28:27] KP: I'm wondering if you'd imagine with me a small startup, founders bootstrapped it, 
they're doing well, they're selling subscription widgets, the thing runs on GCP. They got three 
people and they're ready to grow. At what point do they turn Trifacta on?

[00:28:40] JH: The minute they have messy data, basically. And we get this with like nonprofits 
that are one people. If you have a really yucky looking spreadsheet, and you want to clean it up, 
you might just go up to use Trifacta for a day. And that might be a way you get started. It'll tell 
you what's in your data, what's not in your data. It'll help you figure out how to clean it up and 
give you the tools to do it. And it's serverless. So you're kind of paying for usage at that point. 
It's cheap. 

So we see it like at the very beginning scale. We also see people set up multi-terabyte pipelines 
with Trifecta that run every day, where the operationalization features of the product are being 
used. And there's multiple people who are checking in on the health of the pipeline and 
managing it. Different people authoring it and they’re all collaborating within the Trifacta 
ecosystem. So really, it does span from the individual to the large enterprise.

© 2021 Software Engineering Daily 14



SED 1401 Transcript

[00:29:29] KP: And then do you sit on top of my existing data infrastructure? Or are you 
ingesting into Trifecta and mirroring something in some way?

[00:29:38] JH: Yeah, I'm so glad you ask that. It's been a tenant of the design from the 
beginning that we do not ingest data. We do not process data. We look at data, and we give you 
examples of it so that you can manipulate it visually. But when we're done, we generate code. 
And that code runs in your native environment. So if you're running over, say, snowflake, what's 
happening is we ingest some samples from Snowflake. You work in your browser. You clean 
that up. You generate a series of SQL queries that we push down to Snowflake. Similarly, with 
Google and BigQuery. 

If you're doing this in a Spark environment, we're generating Spark. But the bottom line is like 
wherever your data is stored, the runtime you use, that's your choice. We don't pull the data out 
other than to put it in front of your eyeballs in the browser. But beyond that, we're pushing code 
to data. We're never pulling data to us. And that's so important. If you're a database person, you 
know this deep in your bones. You always push code to data. You never move data to your 
system. And many of our competitors got that wrong and are now by the wayside, because 
you'd have to stand up a cluster in front of your cluster to run their tools. No cluster required for 
Trifacta. It's just an environment for authoring, monitoring, visualizing.

[00:30:45] KP: Well, tools like these make the data more accessible to a wider group of 
professionals, as you said, not just a computer scientist, but someone with some analytical skills 
can now come in and explore. With that in mind, what do you think the landscape of what a data 
scientist, or a data engineer, or a business analyst does a few years out? How is that evolving?

[00:31:05] JH: You know, I think that could go a couple different ways. And as I asked this 
question of colleagues and friends, I get different answers. So let me paint two pictures that are 
a little bit different. And frankly, these are pictures you could find today in the wild. So which one 
of them will be more common is unclear. In one picture, what's happening is that folks who 
started out as analysts and data scientists become increasingly technical and go further 
upstream into the data. So they started out just building models or just building charts. But then 
they're doing their own data transformation. And then they're doing their own scheduling and 

© 2021 Software Engineering Daily 15



SED 1401 Transcript

operationalization. And then they're doing their own acquiring of data from data sources, and 
they own a full pipeline. 

And in that world, data analyst, data scientist, data engineer becomes kind of just one job 
category. The tooling, if it can support that, allows the person at the end of the pipe who 
understands the business problem to own everything. So that's one picture. 

A different picture, which you see in other shops is what we really want is we want our domain 
experts, the people who understand, let's say, the business use case, to focus on the business 
use case. We want the data engineers to focus on operationalization. And we want the software 
engineers to write any custom code we might need for our particular business. But we want all 
of those groups to be able to interoperate super cleanly, and transparently, and seamlessly. So I 
want the data engineers and the business person to be able to talk to each other very fluidly 
about what's working, what's not working, what they need, and how to get it. And that the tooling 
needs to support really agile work across specialties and across organizations. Because frankly, 
when you hear these stories that like 80% of the time in a project is spent in wrangling the data, 
a lot of that 80% of time is like translation error, where the business user said, “I think I need a 
chart. Will you cut me a piece of the data that will build that chart?” Data engineer goes and 
does it and give it to the business user, and the business user is like, “Actually, this is not what I 
wanted,” right? 

So you got to close that loop tightly, either by making it one person, or by making those 
personas able to interoperate really efficiently.

[00:33:02] KP: Well, for listeners who want to see if Trifecta is the right solution for their data 
quality issues or other data processing needs, what's the best place to go and learn more?

[00:33:11] JH: Simplest thing to do is to go to trifecta.com. And there's a button on there that 
says, “Start wrangling,” and it'll let you set up in your favorite cloud and get going. It's free trials. 
So you can get your hands on it and your eyeballs on it most importantly and see what it looks 
like. I have to say Trifecta is a story that tells itself better in pictures than in words. It's a very 
visual tool. It's very intelligent. And it will speed you along your way in ways that it takes too long 

© 2021 Software Engineering Daily 16



SED 1401 Transcript

to describe. It's not your typical boxes and arrows drag and drop ETL tool. It's something quite a 
bit richer and higher tech.

[00:33:43] KP: Yeah, definitely a very visual experience. I absolutely agree. Well, Joe, thank 
you so much for coming on Software Engineering Daily.

[00:33:49] JH: Thanks for having me. This was fun.

[END]

© 2021 Software Engineering Daily 17


