
SED 1392 Transcript

EPISODE 1392


[INTRODUCTION]


[00:00:00] KP: Writing your applications code is only half the battle. Getting it to run in your 
machine is a milestone, but it's far from your code running in a production environment. There 
are an increasing set of options application designers have for helping to manage deployment 
environments and CI/CD. Encore is a backend engine for the Go language. One of its core 
features is the ability to turn any function into an API endpoint with just an annotation. 


André Eriksson is the founder of encore. In this episode, we discuss his experience as a 
developer and explore the features and functionality Encore has to offer. 


[INTERVIEW] 


[00:00:37] AS: Andre, welcome to Software Engineering Daily.


[00:00:40] AK: Thank you very much. It's a pleasure to be here.


[00:00:43] KP: Let's learn a little bit about you first. How did you get your start in software?


[00:00:47] AK: Oh, I started way back when I was 10. So it's like 22 years ago. And just built a 
bunch of websites. Eventually, as a young teenager, was very much into games. Started playing 
World of Warcraft. And you can make user interface modifications for the game. So I started 
doing that. Sharing it online. And it just took off. We had 300 million downloads over a couple of 
years. And a lot of the ideas I came up with as a 14-year-old ended up being incorporated into 
the game. I ended up consulting with Blizzard Entertainment on a bunch of stuff, and then 
moved into web development and eventually back in development. And then I kept doing a 
bunch of side projects growing up and eventually joined Spotify right after university.


[00:01:39] KP: What kind of things were you working on at Spotify?


© 2021 Software Engineering Daily 1



SED 1392 Transcript

[00:01:43] AK: Quite a bit of everything, I would say. I started fairly junior. But I had a lot of 
experience from all these side projects. So I ended up working across probably hundreds of 
different projects over the years. I was there for eight years. And towards my last four years, I 
was one of the most senior engineers of the company. So a lot of different projects across 
Spotify Premium, and royalties, and smart speakers, and very much all across the company. But 
in terms of discipline, I was very focused on backend engineering. That's always been a big 
passion of mine. But even outside of that, I've also done a lot of web development, and data, 
and machine learning, and mobile. So pretty all over the place, really.


[00:02:35] KP: Were you working on a Go stack at Spotify, or something else?


[00:02:40] AK: A little bit of Go. Spotify, primarily when I joined, was a Python shop. And then 
nowadays it’s primarily a Java shop. But there are some parts of it using Go around primarily 
Kubernetes infrastructure. And I built up the vast majority of the internal tooling for using Go as 
Spotify. So yes and no. But my day-to-day work was in other languages, I would say.


[00:03:09] KP: Well, if my understanding is correct, it's Encore that started as a side project 
around this time. Maybe let's get started with definitions. Tell the listeners what is Encore.


[00:03:20] AK: So we're calling it a backend development engine. And what we mean by that is 
it's like a game engine, but for backend development. So if you know anything about game 
engines, like Unity or Unreal Engine, the way they work is they make it really, really easy, and 
fun, and productive to build games. They let you focus on your game logic and how you want 
your game to work. And we're trying to bring the same concept over to backend development, 
where when you just want to build your product at the end of the day, which on the backend side 
is a bunch of API's and you're talking to databases and maybe microservices and that sort of 
thing. The reality is that you tend to spend a lot of time not really on building your product, but 
on a bunch of other things surrounding that. Lots of boilerplate. Lots of, I would say, 
unnecessary complexity, that isn't really part of your product, accidental complexity. And so 
that's really what we're trying to get away from, and create a developer experience that really 
lets you focus on building your product and nothing else.


© 2021 Software Engineering Daily 2



SED 1392 Transcript

[00:04:38] KP: So the analogy to a gaming engine is interesting. If I was going to go build a 
game, I would look for one with a good physics engine, maybe some scoring systems. Certainly 
has to do rendering and sound. There're all these services I get. What are some of the services 
that encore provides?


[00:04:53] AK: Yeah, exactly. So like you said, a game engine is all about how can we provide 
you with an opinionated way of expressing your game logic, and in exchange, you get all of 
these things for free? Like physics engine and 3D rendering engine and so on. And the analogy 
on the backend side are things like making it easy to set up API's, generating API 
documentation, integrating with third-party services, connecting to databases, provisioning 
databases, doing distributed tracing, or monitoring, or observability in general. All of these things 
really are the primitives we use when we're building backend applications. Integrating with the 
queues and Pub/Sub topics and all these sort of things. It's kind of been an evolving set of 
building blocks that you build backend services out of. And they really come into this world over 
the last 15 years since AWS launched and they introduced all these different services that today 
we kind of take for granted. But we forget that they've been very recent innovation, and our 
tooling haven't really caught up. So we're trying to take these new building blocks and creating a 
better experience for using them.


[00:06:31] KP: So in that regard, would I consider Encore a framework the way Java has Spring 
framework?


[00:06:38] AK: I think it's an interesting question. Yes and no. Yes, in the sense that it changes 
how you write code, because what our primary focus is, is to make you as a developer empower 
you and increase the impact you can have by providing much better tools. And as a developer, 
you want to spend your time writing code and creating amazing products. And so it stands to 
reason that to empower you and make you more impactful, we need to change and improve 
how you write code. So in that sense, it's like a framework, and that we provide a certain way of 
doing things. But on the other hand, it's very much not like a framework, or at least it's not like 
any other framework you’ve seen, because we also provide a lot of things that have to do with 
how your application integrates with the cloud. So things like automatically setting up 
infrastructure, setting up a test environment, setting up environments for each and every pull 
request, doing distributed tracing in production, gathering insights from production, and feeding 

© 2021 Software Engineering Daily 3



SED 1392 Transcript

them back into the development process, and so on, and so on. So it's really about taking an 
end-to-end look at the developer process and figuring out how can we improve it in a very 
holistic sense?


[00:08:10] KP: Go is the primary language of Encore. Is there any other features? Or is it just a 
Go system?


[00:08:16] AK: We think of it as much like you're writing. When you choose to use Unity to build 
a game, you're using C#. And when you're using Unreal Engine, you write C++. So our 
experience is centered around Go for several reasons. We think that to make it a really 
productive experience, you really need to double down on a single language. And we've chosen 
Go just because it's built from the ground up for backend development. It's really performant. It's 
really scalable. It has really great support for highly concurrent backend services. But it also 
compiles really quickly, which is right in our wheelhouse in terms of thinking about developer 
productivity. And it has a really simple language. So a lot of what we do is based on static 
analysis, to understand how your application fits together. And that's really where a lot of our 
really unique value propositions come from is in this understanding. And so because Go is such 
a simple language, it's quite easy to do that static analysis that you otherwise wouldn't be able 
to do. So we're all focused on Go. It tends to be a really nice language for this sort of thing. And 
we have no immediate plans to change that. But maybe sometime in the future, we would add 
another language. But don't expect that we're going to add 5, 10 different languages. We're 
sticking with one and maybe two.


[00:09:54] KP: Well, let's put ourselves in the shoes of a listener who is a seasoned Go 
developer. They're coming to the table with a few options about you know which cloud they 
prefer and which database they like and they want to get a greenfield project up and running 
pretty quick. What is the Hello World path for Encore?


[00:10:12] AK: So we support all the major cloud providers, Amazon, Google and Microsoft 
Azure. And really, what you do is you can just download the product. It's all open source. So you 
install it in just one line in the terminal. You can brew install it. Then you create your application. 
It bootstraps a simple Git repository. 


© 2021 Software Engineering Daily 4



SED 1392 Transcript

And in that, to define an API, it's really just a function. We have an annotation, which is how you 
communicate to Encore that this function should be exposed as an API. But really, conceptually, 
an API is just an API endpoint, or a REST API, or whatever you want to call it. Conceptually, it 
has a request and it has a response. And we're taking this, and that's what functions are too. So 
we can just model an API as a single function. 


And what's really nice about this is it essentially just becomes plane Go. There is almost nothing 
that you have to learn. API's are functions. API calls to other services. Because we're modeling 
not just a single back end service, but we're modeling a whole distributed system is what you 
build with Encore, you can very easily define multiple services. So if you want to make an API 
call from one service to another, that is just a function call. So you get this very, very natural 
developer experience where everything just works with Go concepts that you already know. And 
the framework, if you want to call it that, kind of just blends into the background. And you're just 
writing plane Go with requests being function calls and the data that you're passing is just 
regular data structures. 


And behind the scenes, we analyze all this code, and we handle the boring parts for you. We 
set up the HTTP handler. We generate documentation. We can generate a client for your 
frontend to use. And then we can set everything up in the cloud for you as well. So everything 
that you have to do is just focus on your application. What do you want your API to do? And 
that's it.


[00:12:34] KP: Very cool. So as I'm developing my application, I'll spend a lot of time focused 
on test-driven development. I'll probably mock that request and response. I'll get my API looking 
really good in my unit tests. And now I want to see it locally before I do any deployment. What 
do I do?


[00:12:52] AK: Well, so that's the beauty of Encore, is it's fully built for local development. So 
you run everything locally in your computer. It has great inbuilt support for testing. So you can 
both easily mock out calling other services. You can mock out databases. If you don't want to 
mock them out, it also supports really easily doing integration testing against an actual 
database. And you can just keep iterating on it locally. And every time we make a change, we'll 
live reload everything. We're working on a test-driven development mode, where every time you 

© 2021 Software Engineering Daily 5



SED 1392 Transcript

save, we'll rerun all the tests for you and so on. So it has a very, very local first type experience. 
And it's only when you want to ship something that you really have to integrate with the cloud.


[00:13:49] KP: Live reload is something we all kind of have come to expect. But it has a lot of 
challenging engineering issues behind the scenes. In my experience developing Go, it was 
always very kind of test-driven. I never had a REPL with Go or anything like that. I don't know if 
that's baked in or if that's something you had to build. How do you manage that live reload 
feature that I'm used to from like, I guess, Webpack, and things like that in Node?


[00:14:15] AK: Yeah. So we don't yet provide a REPL in that sense. But what we do provide is 
we monitor the source code for changes. And every time it does, we recompile everything. And 
Go is really nice here because it has both really fast compile times. But it also has built-in 
incremental compiles. So usually every change is a couple milliseconds to recompile everything. 
But behind the scenes, we're running a local daemon, a background process that is not just 
your binary. And it's actually that daemon process that is running the listener, the HTTP listener, 
which means that when we recompile your application, we can just redirect that socket to talk to 
the new binary, which means that you never have to worry about losing requests if you're doing 
something in the background. You can just have something running against your backend 
nonstop. And as soon as you hit save, and your new version is recompiled and starts up, 
Encore will just immediately reroute request to that. So it becomes this really sort of seamless 
handover from the old version to the new version that works really nicely.


[00:15:38] KP: And what's the deployment story?


[00:15:40] AK: The easiest way to think about it is when it comes to deployment, what do you 
want to do is really two things. You want to make sure that if you're making changes to the 
infrastructure itself, and this is quite common, when you're building distributed systems, or 
you're building in a sort of cloud native style, where you're using all these cloud primitives, 
whether they're distributed queues, or Pub/Sub topics, or object storage, or whatnot.


What tends to happen is, as you're developing your application, you make changes to the 
infrastructure quite frequently both in terms of the products that you use, but also your internal 
infrastructure. You're spinning up new services. You're changing the contracts between services 

© 2021 Software Engineering Daily 6



SED 1392 Transcript

and so on. So to deploy your application with Encore, you can either deploy through GitHub, 
where you integrate Encore’s cloud platform with your GitHub account. And as soon as we 
detect a change, we will then take that commit on your main branch and orchestrate the 
deployment. Or you can push code directly to Encore’s Cloud Platform. Either way, it works the 
same. 


And the first thing we do is we really check all of your application for all of the infrastructure 
needs that you have. Have you introduced a new service? Do we need to set up a new 
database? Are you using a queue that wasn't there before? All of these things, we take care of 
first. And we make sure that we provision all of the necessary infrastructure. And by the way, all 
of this happens in your own cloud account. So you can just keep using AWS, or GCP, or Azure, 
whatever you're used to using. It all goes straight into your own cloud account. 


And we set up all that infrastructure. And then once that's been set up and configured, then we 
actually take the new code and we deploy it. And we can deploy it in a microservices 
architecture if you like, where if you have a Kubernetes cluster we can – For each microservice, 
we'll deploy it separately to different containers and so on.


[00:18:01] KP: Interesting. Actually, I'm wondering if we could zoom in on some of that? Did I 
understand correctly that you're doing provisioning as well?


[00:18:09] AK: Yes. So all of this is based on us understanding how all of your backend 
architecture fits together. So all of the infrastructure needs, your databases, all of these different 
primitives. And that understanding enables us to provision all that infrastructure for you directly 
into your own cloud account.


[00:18:29] KP: So a common path I've taken in the past is let's use Terraform for this, right? I 
need queues, I need a Kafka instance, whatever it is, let me write up a big Terraform script, 
deploy it, and then put that in environment variables or something like that. Are you're able to, 
though, and somehow detect from the source code via Encore that I need a queue, and I need 
to stream, and you're building them for me? Is that correct?


[00:18:53] AK: Yes, exactly. 


© 2021 Software Engineering Daily 7



SED 1392 Transcript

[00:18:54] KP: So how do you know they're there? 


[00:18:57] AE: Yeah. So that's really where this framework aspect comes into play, right? 
Because software is an incredibly general idea. Like, in many ways, it's the most general-
purpose thing we've come up with for expressing logic and behavior. So what our framework 
does is it provides a certain way of expressing that I want a cue. And it's a very Go native way of 
expressing that. So you just use the API's that Encore provide for expressing, like, “I want there 
to be a queue. It looks like this. These are the properties.” And we then analyze your code and 
we can pull all this out at compile time. 


So in many ways, we're building a sort of language on top of Go that is all about distributed 
systems concepts, really. So the output of that is really a graph of all of your distributed 
systems, your services, and each and every services infrastructure needs. And that's what we 
then use to provision all of the infrastructure.


[00:20:09] KP: Well, I really like the idea of coupling provisioning more at the application level. I 
actually had some challenges with Terraform running it from my machine, and then how did I get 
it to somebody else? And they do have a cloud solution we started using. It seems like that's 
necessary to coordinate a lot of this. Can we talk more about what your cloud platform does?


[00:20:30] AK: Yeah. So it works quite similarly to Terraform’s cloud solution. The main 
difference is, as you say, in the development side, where we're trying to get you to not write your 
– When you use Terraform – I love Terraform, by the way. But you end up writing everything two 
or three times, where you write your Terraform definition, which is all of the infrastructure. And 
then you have your cloud provider, which knows about the current state of things. And then you 
have your source code, which has the expectation of all of this infrastructure. And we're just 
trying to unify all these together so you just have a single source of truth for what you need, 
which is the source code itself. 


And what our cloud platform does, very similarly to Terraform, is we can set up all this for you in 
your own cloud account. You just integrate your Cloud account with our platform. And all of this 
is very straightforward. It depends a bit on the cloud provider. And then we can just track and 

© 2021 Software Engineering Daily 8



SED 1392 Transcript

provision all the infrastructure for you and keep track of the lifecycle. So when your source code 
changes, we can detect that and figure out what are the changes that are needed in order to 
deploy the next release. And depending on the changes, we might ask you a few questions. 
Like if you're setting up a database, we need to know – Like if you set up a relational database, 
we need to know which region do you want this deployed if you have a multi-region application, 
because it can matter for latency reasons and so on. But in general, most of those things are 
only needed for production environments. And for test environments, and preview environments 
for a pull request, we can just take care of all of that for you.


[00:22:23] KP: Can you talk more about that process? You'd glanced across it earlier. And it 
sounded really like a major step that every PR could have an environment and be isolated for 
testing? What are some of the options there?


[00:22:35] AK: Yeah, exactly. So when it comes to – I think in many ways, software 
engineering, when you're building a cloud backend, or really a cloud-based application in 
general, we tend to not really collaborate between backend and frontend as much as we should. 
And by that, I mean that, oftentimes, we should be codeveloping at the same time. But what 
ends up happening in practice is it's a lot of hot potato, where a frontend developer might write 
the frontend and then they say, “Hey, backend developer, I need an API that looks like this.” And 
then they go off and do something else. And the backend developer takes over and does their 
thing. And then when they're done, they hand it back and say, “Oh, the backend is ready.” And it 
becomes this sort of very asynchronous collaboration. And usually, in every handover, you 
realize that you had misunderstood something. 


So we're trying to create a much more collaborative experience, where it becomes much more 
interactive. And there are lots of different ways that we do that. We have a way of very easily 
live sharing your local development environment with a colleague of yours. And that means that 
you can just connect straight to their computer and you can live collaborate that way. The other 
way of doing it is with this preview environment. And what that means is, if you integrate encore 
with GitHub, then every pull request that you create, we will analyze the changes that you 
made. And then we will provision a very paired down environment specifically for that pull 
request. And we'll optimize it and bring everything into a single Docker container so that it's very, 

© 2021 Software Engineering Daily 9



SED 1392 Transcript

very lightweight. Bring in all of the databases, run queues in memory or just on disk. Because 
it's not important that it be fully distributed and reliable and so on for a preview moment. 


And then we spin that up. And every time you make a change, you will update that with the 
latest configuration. And this works really nicely with collaborating with frontend developers, 
because we can then enable you to disconnect Your frontend directly to the environment. And 
all you have to do is you have to just change environment name production to PR23. So it's a 
one line change to connect straight to a preview environment.


[00:25:17] KP: Very neat. Well, it sounds like there's a strong enterprise story. What about the 
broke developer with a side project who wants to maybe put something on Lambda so it's pay 
per use? How can they leverage Encore?


[00:25:30] AK: Yeah. All of this, I've grown up – I am that very person myself. So a lot of that is 
actually built in. By default, we provision everything in a serverless way. You don't have to do 
anything. We can set it up with Lambda. We can set it up with Google Cloud Run and so on. 
And we also provide serverless hosting for hobby use, which is completely for free. So you can 
use our cloud platform. You don't have to do anything. You don’t have to connect any AWS 
account. And we'll take care of all the hosting for you. And all of this is you can do it for very 
generous use. I would expect that most hobby developers never have to move over to any sort 
of paid tier with their cloud provider. But it's also entirely open source. So you can take all of this 
stuff that we've been talking about and run it yourself if you'd like. We have lots of people who 
are doing that, and they really love the experience. So that's the idea.


[00:26:36] KP: Can you talk a little bit about adoption? That's probably a wide spectrum. But 
what are some examples or personas of the people who've picked up Encore and are running 
with it?


[00:26:45] AK: We have lots of different – I mean, it's really all over the place. Everything from 
like consumer, like software as a service, kind of like a content play for mental health, to 
developer tooling, and DevOps, to b2b, to like standard like b2c sort of – How should I put it? 
Like hardware sales. Quite all over the place. We're primarily focusing on building a developer 
experience for smaller companies right now, so startups in particular, because we believe that 

© 2021 Software Engineering Daily 10



SED 1392 Transcript

the product – Like when you really want that extra acceleration is at the early stage. And that's 
what we're focusing on. But over time, we expect that this sort of developer experience will be 
invaluable to larger companies as well.


[00:27:43] KP: I'm thinking about the market. As you'd mentioned, you're very developer-
focused. And I'm thinking about something like Heroku, which it's not like an apples to apples 
comparison. But it's also not apples to oranges. Where do you guys see yourself in relationship 
to a provider like Heroku?


[00:27:58] AK: I think what's been really interesting is we've had this sort of synonym between 
cloud providers and developer productivity. And I actually think it's quite strange, because cloud 
providers themselves, they actually sell infrastructure. And there's a real conflict of interest 
between trying to make you as impactful and successful as possible, versus selling you 
infrastructure that you might not need. So we're trying to take ourselves out of that conflict 
entirely by not doing hosting at all. And so I think we think of ourselves much more as a 
complement to the cloud, where the cloud providers really excel at providing extremely high 
quality infrastructure that's very, very reliable, and durable and solid, but maybe not the best 
developer experience. 


So what we do is we work with the cloud providers, and we instead focus exclusively on the 
developer experience. And the only hosting that we do is, like we talked about earlier, with 
hobby developers. Where if you just want to do something at a small scale, you shouldn't have 
to worry about setting up an integration with a cloud provider and so on. So for everything, but 
the smallest of use cases, you should still use your cloud provider. But let us build and provide a 
much better developer experience.


[00:29:34] KP: Well, I that vision. And it's open source. You have the generous hobby layer and 
all that, but you need to fund the project. How are you guys going to make money?


[00:29:43] AK: Yeah. So for us, it all comes down to, if you're a larger company, you actually 
really see a lot of value from the product. Then we'll provide additional things on top that you 
can pay for. And that can be everything from additional concurrent builds, so that you can be 
productive at scale, to maybe more advanced collaboration features or testing features, 

© 2021 Software Engineering Daily 11



SED 1392 Transcript

additional retention for tracing and so on. So there are a couple of those things that we think 
larger companies will want that aren't really critical when you're at a smaller scale.


[00:30:25] KP: I'm curious about what your aspirations are to exist within the GO ecosystem. 
I'm thinking of like the R statistical language. And it has these collection of libraries they call the 
tidyverse. And some would say like you don't even use R without using the tidyverse anymore. 
And sometimes, like maybe even spring, you could say has the same effect on Java that it's this 
prolific framework or way of coding. What will Encore look like in the pantheon of Go 
development a few years down the road?


[00:30:55] AK: I think, as a longtime Go developer, I really, really love how the language has 
been shaped over time. So we're actually trying to stay very close to the language itself. We're 
trying not to introduce a bunch of concepts. When you're writing Spring, like you say, in many 
ways, it feels like a different language altogether. You're not a Java developer. You're a spring 
developer. 


But with Encore, we're trying to stick very, very close to the language. So that the framework 
blends into the background, where you're defining API's, they're just functions and API calls or 
function calls. We're using all of the standard library ecosystem for a lot of the integrations. So 
when you use a relational database, we provide a standard library interface for that. So we're 
really trying to stick very close to the Go philosophy in the standard library. And then just 
providing a few different API's for integrating with the cloud. Like if you need a queue, for 
example, that a package that we provide, because it turns out that's not available in the 
standard library. So we have to provide something either way. But the language experience 
itself, if you're familiar with Go, you can be productive with Encore in five minutes.


[00:32:20] KP: And what's next? Can you tell us a little bit about what's on the roadmap or 
exciting things you're currently working on?


[00:32:26] AK: Yeah. So the primary focus is really on extending the sort of cloud primitives that 
we support. So that's the short term. Including things like object storage, and caching, and 
additional types of databases, and so on. So that all of these building blocks that you're used to 

© 2021 Software Engineering Daily 12



SED 1392 Transcript

using are just at your fingertips. And we'll support all them so that you can just focus on building 
your product. 


And then slightly longer term, we're looking at much more interesting things around observability 
and debugging. And really, using this knowledge that we talked about that Encore has about 
your application to provide you with much more actionable and insightful ways of helping you do 
your job more effectively. So everything from like when you wake up in the middle of the night, 
because your backend service is on fire. And everything you get is an alert fired and the latency 
is too high. That's not very useful when you've just woken up. 


So what we do is we can use all this understanding to gather all that data for you that you would 
normally spend an hour gleaning over graphs to figure out that, “Hey, there was a deployment 
two hours ago that caused this circuit breaker to trigger. And as a result, this downstream 
service started failing. And that's what caused your problem.” And we can do that by actually 
understanding all of these different pieces how your system fits together and all of your 
infrastructure where it is provisioned. So we're looking to use that knowledge to really help you 
in lots of different ways. That's maybe just a very specific example. But I think there are similar 
things we can do in almost every aspect of software engineering.


[00:34:30] KP: In that regard, do you see yourself potentially evolving into the observability 
space and application performance monitoring?


[00:34:36] AK: Yes, we already provide built-in distributed tracing, for example. And that works. 
You don't have to do anything. You can just write code like you would normally, and we'll 
instrument your application for you. And we even provide distributed tracing for local 
development out of the box. And we definitely want to do even more there. We're not going to 
be an observability provider ourselves. But we're looking to provide very easy integrations with 
all of the major ones. So that if you want to send all of your observability data to Grafana, or 
Datadog, or whatever, that's just click of a button. And we'll take care of all of the work of 
actually instrumenting and orchestrating that. But beyond just sending that observability data, 
we absolutely want to do much more with this sort of unique understanding that we have and 
provide you with more actionable things that you can do with that data to make you more 
effective.


© 2021 Software Engineering Daily 13



SED 1392 Transcript

[00:35:43] KP: So greenfield projects, you've got some nice demos and tours and things people 
can get up and running. What about the migration path, someone who has several years into a 
mature Go application? How can they get it integrated with Encore?


[00:35:58] AK: The way we think about it is both, really, for Go companies and other languages. 
The beauty of building distributed systems is that you don't need to use a single language for 
your whole backend. If you really like the experience that Encore provides, then it's very, very 
straightforward to use it for a single service that can run alongside all of your other services. So 
if you already have a backend running in, let's say, Google Cloud Platform, all you have to do is 
integrate Encore with your Cloud account and tell us where your application lives. And Encore 
can actually deploy the things you’re building with encore alongside what you already have. And 
then they can integrate seamlessly with API's, like anything else, calling each other over the 
network. So that's really how we encourage companies to adopt it, is try it out for something on 
the side, like a small project. Wee what the experience is like. And if you like it, you can just 
deploy it alongside everything that you have and it will work seamlessly like any other service.


[00:37:15] KP: Well, if listeners want to dive right in, tell us the path to get started.


[00:37:19] AK: Yeah, so it's all open source. The easiest way to get started is go to encore.dev. 
And from there, it's just a few clicks to download it and set up a simple Hello World application 
and go from there.


[00:37:36] KP: Very cool. Well, André, thank you so much for taking the time to come on 
Software Engineering Daily.


[00:37:41] AK: Thank you very much for having me.


[END]

© 2021 Software Engineering Daily 14


