
SED 1383 Transcript

EPISODE 1383


[INTRODUCTION]


[00:00:00] KP: Thanks to the amazing books, blogs, videos, quick starts frameworks and other 
software related resources. Getting Started as a software engineer is easier than ever. Although 
you can get started in a day, it can take years to become a master of the craft. And most 
practitioners describe it as a profession of lifelong learning. 


Titus Winters is a Senior Staff Software Engineer at Google and the author of the book Software 
Engineering at Google, often known as the flamingo book. This book is not just tips for 
structuring, writing and testing code, although that's there for sure. It's a resource that outlines 
all of the facets of software engineering practices that apply in professional settings through the 
lens of lessons learned at Google. 


[INTERVIEW]


[00:00:45] KP: Titus, welcome to Software Engineering Daily.


[00:00:49] TW: Thanks for having me.


[00:00:50] KP: So I think you might be most famous for being one of the authors of the flamingo 
book. Maybe there's another credit that shines higher sometimes. But for listeners who don't 
know it, what is the flamingo book?


[00:01:02] TW: This is software engineering at Google from O'Reilly. We put that out. Great 
timing. It was late March 2020. There was nothing else going on then, let me tell you. But, no. 
This was a joint project sort of following in the theme and style of the SRE books. But whereas 
SRE was itself fairly novel, software engineering isn't necessarily. But at the same time, Google 
has been. Let's say, we have some scale experience that isn't common for others. So we've 
solved a few problems and encountered some things that we thought would be useful to share 
with the rest of the world. 


© 2021 Software Engineering Daily 1



SED 1383 Transcript

[00:01:43] KP: Absolutely. Software engineering at Google, as you said, there are problems 
that Google’s tackled that I'm sure they were the first to tackle many times over. How has that 
shaped the overall process and the ways in which Google approaches software?


[00:01:58] TW: So I think that the commonalities that we keep finding are that it's really a matter 
of teamwork and communication, and making sure that our processes sort of scale, which really 
isn't a given. There's plenty of software engineering sort of norms that kind of don't scale once 
you get above a certain threshold. But then it's also a lot about planning for time, and 
maintenance, and change. I say fairly regularly, things like software engineering is programming 
integrated over time. Like these are different dimensionality. I don't believe that change for 
change’s sake is good. But I do believe that over the expected lifespan of your code, of your 
project, you need to be capable of changing. And it's often wise to practice. And the places 
where we've, I think, had the most success have been in the places where we really kind of 
planned for how are we going to change this effectively in the future. And that's been a little 
novel, in my experience.


[00:03:11] KP: I think this is a point a lot of people even senior software engineers sometimes 
struggle with. It seems that something about source code feels like you're writing it in stone. 
Once you've got it working, it's this mathematical object that's just perfect. Why is that incorrect?


[00:03:27] TW: Because the complexity of everything that we're building is just so intense. And 
it's rarely the case that we have, a perfect mathematical proof of this is correct, much less 
optimal. And even in the cases where you have like an idea that, “Oh, this is theoretically 
optimal,” there's still going to be changes in hardware, and languages, and dependencies 
underneath you. And over time, given enough time, something is going to change. 


I lean a lot on examples from like security incidents and vulnerabilities because those are clearly 
very high stakes. Say, the speculative execution vulnerabilities, the Spectre and Meltdown that 
was making all the headlines a few years ago, and that are still very much a real thing. I think 
that for mitigating those sorts of things, by enlarge, you kind of just have to recompile. And I 
know that a lot of groups like aren't on a current compiler, or don't have access to the source 
code to recompile, right? And if you don't even have the ability to change the binary that you're 
operating on, then if we wind up with vulnerabilities in that binary blob that you're depending on, 

© 2021 Software Engineering Daily 2



SED 1383 Transcript

now you have a choice, right? You either suffered the security vulnerability risks or you figure 
out how to change that thing. 


And I think once you start like looking around at over 5 years or 10 years, most of the things you 
rely on are going to change in some fashion and probably in ways that you don't expect. That 
gives you a different sort of stance and footing for, like, what do you accept, and what are you 
going to try to plan for, and what are you going to practice?


[00:05:21] KP: Well, there was a time in my life when I was going to live somewhere for just a 
few months. So I said, “I'm not going to buy new furniture, decorate. This is temporary.” And 
maybe I've written some software like that where it's just to bridge a gap. But generally, I like 
working on software projects where I think I'm building for the next 1000 years or something like 
that, even though I know that can't be true. Do you have a good rule of thumb or way to think 
ahead? What am I building for when I take on a big project? 


[00:05:48] TW: I don't have a rule of thumb for making that decision. Because I think it's very, 
very contextually dependent. I think it's very commonly the case. If you're working for a startup, 
you should probably assume that you're going to be around for six months or a year, right? You 
need to make it in the next round of funding. You don't need to plan a whole lot further out than 
that. If you become successful, then you can deal with changing the life expectancy of your 
project to that point. 


I think it's sometimes the case that you can know ahead of time that the code you're about to 
produce is going to be years or decades. And a lot of the time, you're just writing like a 
throwaway little shell script or something, and you're going to delete it in 10 minutes, or never 
run it again, right? 


And one of the ideas that I lean on a lot, and that's very present in the first chapter in the book, 
is that there's six orders of magnitude of reasonable answer to how long is this code going to 
live, right? Somewhere between seconds and decades. And it would be absolutely bananas if 
we actually thought that the same best practices applied on both ends of that spectrum. And the 
people that are really zealous about, “No, you have to write tests and have code review even for 

© 2021 Software Engineering Daily 3



SED 1383 Transcript

those little shell scripts.” Like, I don't know if that's true. Like maybe, but like I wouldn't fight 
anyone over that. 


Whereas on the very long end of the spectrum, like plan for change. Yes, write tests. Yes, have 
code reviews. Like you need a different perspective. And then between those points, you have 
this kind of gradient. I would recommend people probably plan for a little bit longer than you 
expect. Very much like your example of, I'm not going to buy furniture. It's really easy to 
underestimate how long something's going to live. But still, I think the most important thing is 
ask the question, how long is this going to live?


[00:07:53] KP: Yeah, makes sense. As an engineer, maybe even a recent hire, where do I look 
to? Obviously, I should get some direction from my manager. But are there any lessons or ways 
I should be thinking about my code and trying to figure out my role within the org?


[00:08:08] TW: I think that this is the thing that we are still very much trying to figure out. One of 
my side hustles right now is I'm sitting on an ACM IEEE task force for writing the next generation 
of computing curriculum guidelines. Specifically, I'm in charge of the software engineering parts, 
but I'm consulting on a few others. And this is really reinforced for me like what we teach our 
undergrads currently and what we can kind of assume from a new grad hire, for instance. 


And I would argue that in almost all cases, our new grads are trained as programmers, right? 
They can write some code. They're probably not expert at that. But they can write some code. 
They're competent in that. And I don't think as an industry we do a really great job of telling them 
when we're interviewing, or hiring, or when they're onboarding. Hey, your job is not actually to sit 
down and write a bunch of code. Your job is to solve some problems. You might do that with 
code. 


I like the comparison to aeronautical engineers, right? The job is not build things out of as much 
titanium as you can. The job is get people safely from point A to point B at a reasonable 
expense. You happen to do that with aluminum and titanium. And similarly, like the software 
engineer’s job is solve problems, right? All sorts of problems. Tech is good at addressing 
problems, sometimes causing problems too. But we don't tell people like, “Hey, your job is not 
actually measured in how much code did you churn out?” There're more important things. And it 

© 2021 Software Engineering Daily 4



SED 1383 Transcript

will be I'm working on trying to make it clearer that our new grads, “Hey, that's not actually the 
job.”


[00:10:06] KP: I really appreciate your point about that gradient, from the way Google writes 
code, to some startup that is literally writing code to stay alive on a day-to-day basis. What are 
some of the most important lessons? If I'm in that role and I'm in a three-person team, and every 
day is a new fire to put out? Maybe I'm dreaming of Google scale for the venture I'm involved in, 
but I'm not there yet. What are some of the most important lessons I should take away and keep 
in mind even though I'm at the opposite end of the gradient right now?


[00:10:36] TW: I think it's important to still be aware of like which of your practices are going to 
work in the long term, and where your code has surprising sort of technical debts. And in both 
cases, keeping kind of an inventory of what you think is going to need work eventually is 
probably wise. So in the policy space, for instance, I still encounter plenty of groups that seem 
to think it's a really good idea to have dev branches that live a long time. 


And I think there's been plenty of research from groups like the DevOps Research Association, 
as well as just tons of anecdote that long-lived dev branches are kind of counterproductive to 
good productive outcomes. And you can probably make it work when you have a small 
organization. But as you start growing, you have more teams and more people and you start 
having choices of what version of things to depend on. You're just adding choices, and 
collaboration points, and questions. And that's just a lot of overhead. And that doesn't seem to 
serve as well. 


And similarly, things like who gets to merge next become kind of dominant and kind of annoying 
questions for an organization that started in that fashion and hasn't gotten themselves out of 
that habit. And that said, like it may be a reasonable place to start. I'm not really capable of 
judging the efficacy of that pattern for a three-person project or for a five-person project. But it 
certainly doesn't work for 50 people or 100 people, right? 


So like keeping an inventory of, “I don't think this is going to be the right policy for us in the long 
term,” seems wise. And similarly, like your technical debts and dependencies of, “Hey, we 

© 2021 Software Engineering Daily 5



SED 1383 Transcript

started writing this in Python several years ago. And we really should do the Python 2 to 3 
upgrade, right?” 


[00:12:42] KP: Yes. About time. 


[00:12:44] TW: If your startup is facing bankruptcy or folding in the next couple weeks, I 
wouldn't worry about that, right? If it's six months out, maybe, right? If you're sure that you have 
a year's worth of runway, like maybe this is a really good time to start, like paying those things 
off. And I think all of that maybe summarizes as you just kind of need to have an awareness of 
what your exposures and hits to productivity are going to look like. The SRE’s always say you 
can't run a reliable service in production without monitoring. And I think there's a reasonable 
corollary to that for the parts that are earlier in the workflow. You need to kind of be aware of 
what your risks are.


[00:13:35] KP: Well, to full stick with our hypothetical three-person startup for the moment, and 
imagine that you 18 months later they've grown. Tow they're 50 people and something has to 
change for sure. A first step, I could buy 50 copies of the book and hand it out to everybody and 
hope they kind of self-organized. But I imagine there's a little bit more to it than that. Can you 
talk a little bit about how to develop a good culture and good teams to make the system all work 
together?


[00:14:00] TW: So it is not an accident that the first chapters in the book are about culture, 
because I very firmly believe that environment team cultures that are supportive and 
collaborative are going to lead to better outcomes in the end. And I've seen this on my own 
teams. I work on very low-level C++ library infrastructure for the most part. So projects like 
Abseil were things that came out of my group. And what I saw there when we made a conscious 
effort in fostering positive and supportive team culture was that we got so, so, so much more 
done, because we specifically made it a norm that it is perfectly okay to not know everything, 
which should be obvious, because software is really complicated. It's perfectly okay to make a 
novel mistake. It's perfectly okay to ask for help. 


And when we really focused on these ideas, we added a little ritual in our team meeting of 
kudos and the monkey. And the kudos part is just go around the room. Anyone that wants to 

© 2021 Software Engineering Daily 6



SED 1383 Transcript

speak up can identify something good that other people on the team did for them, like helping 
out, answering questions, shouldering the pager, whatever. And then the monkey is sort of a 
jokey competition for who made the biggest most novel mistake this week. 


And by normalizing it, by making it kind of a team shared experience, it makes it clear that it is 
okay. Like we're not aiming for perfection. We're aiming for learning from our mistakes. And by 
airing those publicly, you see that the rest of the team doesn't jump on you. They support you. 
They laugh. They learn from it. And we don't make the same mistake twice. 


And by doing these two things together, we're like building bonds of respect amongst the team. 
And also fostering trust more aggressively in terms of, “Hey, it's going to be okay if I didn't get 
this right the first time, right? If I learned a new thing.” And none of this is the same as like I'm 
not saying that it's unacceptable to point out that someone made a mistake, right? It's just not 
about blame. It's about learning, right? 


And the more that we have been able to foster and replicate that sort of experience, wow, those 
teams get an awful, awful lot done. Because you're not worried about people betraying you or 
stabbing you in the back. Everyone is there to catch you if you fall, and you move a lot faster in 
that environment.


[00:16:57] KP: One of the things that was interesting in Jeff Meyerson’s book on Facebook was 
their onboarding process. They hire people. And you kind of first become a Facebook engineer, 
and then you go to this kind of training camp. And from there, you are not applying for teams, 
but you end up joining some team through that process. Could you talk a little bit about the 
similar or compare and contrast the differences of what onboarding is like at Google?


[00:17:22] TW: In a lot of respect, I like the Facebook model. For Google it is, for software 
engineers, if you pass the interview bar, you get through a hiring committee. Then you'll 
probably be shopped around with some teams that have openings in whatever offices you are 
potentially going to join up in. And so there's a little bit of a matching process that goes on there. 
But by and large, it's mostly done before you actually join up. And so you're sort of making those 
decisions based on resume and describing what the project looks like, and a couple sort of fit 
calls, those sorts of things. 


© 2021 Software Engineering Daily 7



SED 1383 Transcript

And so in some respects, I like the Facebook model better in terms of you get a more hands-on 
understanding of what that team might be like and what that work is going to be like. And I think 
that's maybe safer, healthier in the long run. In some respects, there certainly have been plenty 
of cases where an initial team fit at Google was not quite right. And that's hurtful for the new 
hire, and hurtful for the team, and hurtful for the organization. It would be much better if we had 
ways around that. 


[00:18:40] KP: What’s right point in my journey as a software engineer for me to pick up the 
book?


[00:18:46] TW: I would like to think that there's no wrong time for that. And honestly, I'm spotting 
more and more undergraduate courses on software engineering that are picking up the book as 
either primary text or additional reading. This probably helped by the fact that the book is now 
freely available. The PDF is just readily out there now. But I think presenting sort of a theoretical 
understanding of like why one version control policy is going to be more effective than another 
or why dependency management is not a hard problem for a programming project, but is an 
existentially difficult problem for a long-lived software engineering project. Those are great 
topics that I could easily imagine being discussed at length in an undergraduate lecture, those 
sorts of things. 


I think for people that are new engineers, reading through the topics on culture, and teamwork, 
and even code review, those are very valuable sorts of things. And if you are a leader and 
making the technical decisions, making the policy choices for your team, I think that there's still 
a lot of wisdom hidden in the book on various topics. I don't think you have to read through it 
cover to cover. I think you can kind of poke at what topics feel most relevant. But it should 
hopefully be useful and informative at all of those points in the career.


[00:20:25] KP: Well, dependency management is one of those things. I'm sure there's someone 
out there, right? As you say, at scale, everyone's line of code is important to someone. But by 
and large, software engineers don't particularly like managing or fixing dependency things. We 
call it DLL hell, or library nightmare and stuff like that. Are there things I can do to maybe better 

© 2021 Software Engineering Daily 8



SED 1383 Transcript

equip my code for the next person that's going to have to worry about it when I've moved along 
to something else?


[00:20:51] TW: Tests. Just write tests. Write good tests. That's by far the most important part. I 
wrote the dependency management chapter myself. And from my perspective, most of what we 
do is not actually working, certainly not at scale. And I think it's kind of wild that we're still relying 
on, say, SemVer, to suggest, “Hey, are these things going to be compatible together?” Instead of 
actually run the tests, “Are they compatible?” right? 


I think from a from an abstract perspective, it is obvious that SemVer is a very lossy, like human 
attestation of how compatible do I think this is? Which is not in any way, shape, or form a proof. 
Running the tests is not proof, but it's a heck of a lot closer. And we would be – I suspect, we 
would have a whole lot less DLL hell, as you describe it, if we relied more on evidence and less 
on estimate. 


[00:22:00] KP: I feel like tooling has come a good distance in this, the days when I was learning 
to programming, or learning to program and downloading stuff, and copying things out of 
magazines. Everything felt very nightmarish then. Although, today, I can sometimes go clone a 
repo, type npm i, and everything's up. It just kind of automatically works for me. So we've 
certainly made a lot of advancements as an industry as software engineers. What are some of 
the major gaps you think that could be closed in the future?


[00:22:30] TW: So I think that the ecosystems that are working like Rust and Node, like you just 
mentioned, both have some ability to query against the public like dependency tree of, “Hey, if I 
commit this change, isn't going to break people?” right? And that's kind of key. 


When we focus entirely on backwards compatibility. In a theoretical sense, we're missing all of 
the nuance. And like it is entirely backwards compatible to remove a thing that you're sure no 
one is using. But that really points out the fact that compatibility is not a property. It's a property 
of a relationship, right? You can only really evaluate compatibility in any context of how it has 
been used. And we're getting better at that. 


© 2021 Software Engineering Daily 9



SED 1383 Transcript

I'm thrilled to see legitimate language dependency ecosystems that are building up that actually, 
like, account for that sort of thing. But I think some of the places like C++’s lack of cogent 
package ecosystem is really challenging. We're making some progress. VC package is very 
nice, for instance. Conan is not bad. 


But by and large, adding a dependency in C++ is still a thing that people will like get up in arms 
about. In Python, the PIP ecosystem scares me a ton. Because for pure Python packages, okay, 
it's probably fine. For packages that are built on top of anything lower level, they've fixed the tool 
chain. They fixed the libc version to something from basically 10 years ago. And so like a ton of 
energy and effort is being worked or is being devoted to trying to work around like version in 
compatibility things, because they didn't plan for change. Time, change, it's at the bottom of all 
of the worst problems. 


[00:24:40] KP: Absolutely. One of the things scalability brings you is sometimes problems you 
didn't know you had. I’m trying to think of if I have a real world example, but like maybe in the 
backyard when I don't take care of the plants. I'm like, “Wow! This is really grown and gotten out 
of control in a way I didn't expect.” Are there things like that that Google has learned its lesson 
on or maybe had some foresight on that are interesting talking points about what it is to be a 
software engineer?


[00:25:05] TW: Yeah, I think so. So two that come to mind, the very simple like early experience 
working on a team, you might put out a notice to everyone on the team saying, “Hey, I'm about 
to land this big refactoring.” No one commit for the next few hours or days. That's fine when 
you're very small, but isn't actually going to work as you get bigger. And that starts nudging you 
towards you're going to probably want to find a different way to do that refactoring. 


And then at our scale, one of the things that people often find surprising is you're certainly not 
going to rely on your in-IDE refactoring tools to make codebase-wide changes. That just doesn't 
scale that way. The public statistics on, say, the C++ code base here, I've got 12,000 developers 
that will commit a change in my codebase this month, and it's somewhere north of a quarter of a 
billion lines of code. Like I can't load that in my IDE and do a find-replace, right? That's not 
going to do it. 


© 2021 Software Engineering Daily 10



SED 1383 Transcript

And even if I could, I wouldn't want to, because if I'm going to make changes to 50,000 files, it 
takes so long to sync that change like from upstream. That by the time I'm done with the sync 
operation, it's very likely that some file in that set has already been changed, because 10s of 
1000s of engineers, right? 


And so there comes a point where you get so large that the changes that you might want to 
make to your most common vocabulary sorts of interfaces, you can't make that in one step 
anymore. Because you literally can't sync to head to commit that change before someone has 
changed something out from under you. 


And even if you could, the question of, “Can I test this? Can I roll it back if something goes 
wrong?” These things actually start to be very concerning. And so you wind up having to have 
entirely different approaches to how you do refactoring at scale. So the chapter in the book on 
large scale changes goes into kind of some of the theory and the practice around all of that. And 
people years ago would have been shocked at the amount of like just kind of background 
cleanup churn that we go through. But we find that it's been really important to shake out bugs 
and brittleness and clean up old technical debts. These days, changing 10,000 files is kind of a 
background task over the course of a week. It's just we got used to it. It's not a big deal 
anymore.


[00:27:50] KP: Well, knowing that you had these challenges, and also knowing that Google is a 
mono repo will seem kind of confusing to me and compatible. Why still be a mono repo?


[00:28:01] TW: Again, it becomes a question of choice, I think. And it's not so much that 
everything is checked into one repo that matters. So much as some of the properties of that that 
matter. And for instance, I would summarize it as you need to not have a choice of what version 
you depend on. You need to not have a choice of where you commit. And you need to not have 
a choice of what you are syncing to. 


So as long as you have a consistent version of what is at head, and as long as like this is the 
version of this that I depend on, then you'll be fine. But you're effectively building the properties 
of like a virtual mono repo. And I know that it's surprising. But it turns out that when you have 
this sort of centralized and I have visibility across all of the users, yes, it is more work for me 

© 2021 Software Engineering Daily 11



SED 1383 Transcript

when I want to make that change. But when I look at it as is it more work for Google? If I 
centrally discovered like, “Okay, this change needs to be made. I'm changing from foo to bar in 
some interface.” 


If I look at all of the uses of that, and I find the common patterns, and I build tools to do that, 
because I'll drive myself crazy if I don't have tools, then through centralization and automation, I 
can probably just go into everybody's code and make that changed for them. If it's not changing 
behavior, then this is safe. And if it's a modest change to behavior that we can generally reason 
about, then you can usually do this with a little bit of static reasoning, and you go run the tests. 


On the whole, this costs me a lot, but it's very cheap for Google as a whole. Whereas if we 
fractured everything into individual, smaller projects and smaller repos, then someone in each of 
those repos needs to be asking the question of, “Hey, which version of things am I depending 
on?” “Hey, for that version, when I do an upgrade, is there an incompatibility that I need to take 
into consideration? What is that change?” “Oh, you're changing foo to bar? How do I do that.” 
And then you can go track that down and you do it once kind of without experience and with a 
little hesitancy. And then you commit it and you move on. And you multiply that by hundreds or 
thousands of teams. I can tell you which of those is cheaper for an organization and in the 
aggregate, right? And that's, I think – To my mind, that's the actual argument for mono repo, is 
it's just fewer, less hidden, less unknown, fewer choices, and more opportunity to benefit from 
economies of scale.


[00:30:55] KP: When it comes to testing, I see a lot of advantages and that everything's in one 
place. And I'm not going to name names here. But I've seen an anti-pattern at a lot of 
companies where, initially, they have good commitment to unit testing. A couple of developers 
have really written some good unit tests, and maybe some good integration tests. They grow 
and grow and grow. And these tests start taking longer and longer. And at some point, everyone 
just slips into using this ignore all tests flag or something like that. And it's like everything's lost 
all at once because it outgrew itself. Google didn't have that problem. And you've grown bigger 
than, arguably, any other company. How can testing still be prominent when those challenges 
exist?


© 2021 Software Engineering Daily 12



SED 1383 Transcript

[00:31:32] TW: So we're still learning. I won't say that I have all of the answers here. But we've 
been pretty conscious, I think, about keeping a separation between things that we want to run 
pre-submit before your PR is merged, and things that we can run post-submit. And the post-
submit work, for instance, is gated not by we're going to run all of the tests for every change. 
But we have kind of a fixed budget for how often are we going to run. Or, yeah, how often are 
we going to kick off the tests. And that may mean that there's a range of changes that landed 
that something in there broke, we'll have to figure it out. But that separation and that awareness 
that like, “No, we're not going to run all of the tests for every change.” I think that was bias. 


The other thing that I'm increasingly seeing us move towards is I think we need to have a better 
and deeper understanding of how sort of non-binary tests fit into the continuous integration 
workflow. So I've been thinking a lot about like how does – How do we incorporate fuzzing? And 
how do we incorporate random tests, like actual tests of randomness, for instance, into the 
workflow? Because our whole model on CI systems is, “Hey, I ran all the tests. It's green. So I 
submit.” But at scale, that doesn't actually work out because some amount of tests are flaky. 
And some amount of things are just not actually a red-green signal, right? It's kind of a, “Well, I 
didn't spot anything. But if I run longer, maybe I would find something.” 


And what I'm increasingly seeing is there's a pretty solid comparison to be made between the 
model that we use for thinking about continuous integration, versus the model that we use for 
like monitoring in production. You're going to have some, like, alerts that trigger when unusual 
events occur. And those probably require an SRE gets paged, they need to go investigate. 
Some of the time that is actually indicative of there're about to be a problem. And some of the 
time it's a, “No. The alert was wrong. I'm going to silence the alert and move on with my life.” 


And I see a lot of parallels between that and the way that I think CI at scale probably needs to 
be conceptualized. And once we start doing that, then it becomes more clear that CI is actually 
a signal processing problem. And most of the decision points are really things that computers 
are going to be better at, right? We need to look at the historical state of this test as a signal. 
Did I change the passing rate on it substantively? Is that actually indicative of predicting a failure 
in production? Or is it just a bad test, right? If it's a bad test, then I can silence it, whatever, 
right? But we need to sort of advance from a model of tests are proof and it's impossible to skip 
everything and we need to run everything all the time to tests are a signal’s proxy sort of 

© 2021 Software Engineering Daily 13



SED 1383 Transcript

problem. Run the subset of those that are going to be fast enough to give you some confidence. 
And let the computers do the rest of the signal, like gathering and processing, to decide whether 
or not your change was actually good. And if it wasn't, then roll it back. 


[00:35:07] KP: I think most people intuitively know that some sort of code review is a good 
thing. And I think a lot of people's experience is they were just thrown to the wolves. Just go 
have a code review. You and two people figure it out. Of course, we should have some lessons 
learned and process around that. Can you share a few tips? I know there's a lot in the book, but 
just some ideas about how to organize and participate in a good code review?


[00:35:29] TW: Yeah, we did some interesting studies on this and even published academic 
papers on it. And it turns out that, for all that we take code review very seriously, the primary 
benefits of code review are not usually in bug finding. It might be in inefficiency finding. But it's 
mostly in education and knowledge sharing, and it's a communication activity with your team. A 
code review is a really good chance if you're on a team, for instance, that doesn't rely on pair 
programming, extensively. Code review is probably the only time that someone else on your 
team is going to look at the code that you are producing in detail. 


And that is a really great opportunity for both parties to learn more about the code, more about 
the libraries that you might be using, more about the accepted coding style, more about the 
programming language. And it's even nice from a sort of pedagogical perspective, because any 
lesson that might be transmitted during a code review is actually like highly relevant, right? “I 
was working on this. I did this thing that is maybe a mistake. Now we have a perfect opportunity 
to introduce, “Hey, have you read this like best practice write up?” “Oh, yeah, that does apply. 
Okay, let me go update things.” So like the educational aspect of that I think is really valuable. 


The other thing that is really important and not obvious to most people is code review. Because 
it is a communication activity with your team, really, really needs to be very polite, right? You 
need to focus an awful lot on clear professional communication, right? Be very careful about 
how your written communication comes across, right? It's easy to sound kind of like an ass, 
whether you meant it or not. And since it is someone on your team, you probably don't want to 
piss them off or upset them. And that's not the same as you don't want to point out what's 

© 2021 Software Engineering Daily 14



SED 1383 Transcript

wrong. But you don't want to make it a finger pointing and blame sort of exercise. You want to 
use it as a learning opportunity again. 


And so the more that we focus on professional communication, and clarity there, and take 
advantage of those learning opportunities, the more that we wind up with code that several 
people on the team understand and everyone on the team has learned from. And that's kind of a 
great win.


[00:38:15] KP: Well, in addition to your role at Google and being an author, you're also heavily 
involved in the C++ world. Can you tell me a little bit about some of the ways?


[00:38:23] TW: So I spent a few years on the C++ Standards Committee. And for about three 
years, I chaired the working group for the Library Evolution. So that's roughly the design of 
things that changed in the standard library for C++. Between C++ 17 and C++ 20, most of those 
design changes went through the room that I was chairing. And, yeah, I've spent a lot of time 
trying to get the committee to adopt a sort of different stance on adapting to change and being 
able to learn from or fix its mistakes. That has been challenging to say the least. 


So I think my committee involvement has dwindled a little bit. But I still am fairly active on like 
C++ Twitter, and in the C++ conference space. And internally, we rely a whole lot more on things 
like Abseil than on the standard library at this point. Because from what we can tell, the standard 
library is just not going to really prioritize the ability to change things. And therefore, they're not 
really prioritizing performance. And at Google scale, those performance needs kind of dominate 
a lot. 


[00:39:40] KP: And what's Abseil? 


[00:39:44] TW: So this is a project that started back when Google split into Alphabet. And we 
asked teams, we asked other companies that we're about to be split apart, “Hey, what are you 
going to miss when you're ejected from the Google codebase?” And they identified a lot of 
things, but it was kind of the high-level crown jewels, like AI processing sorts of things. But 
because they're all computationally-intensive, they were all built against the common libraries 
that my teams had owned for years. 


© 2021 Software Engineering Daily 15



SED 1383 Transcript

And we had never really had the funding to really aggressively clean those things up. But if we 
wanted to share the good parts, we would either be asking these other bets to adopt our 
technical debts in order to use those good parts. Or we have to figure out a way to share the 
infrastructure and clean up the technical debt. 


And my leadership was wise enough and forward-thinking enough to fund that effort. And so we 
had quite a number of engineers that were cleaning things up, resolving old refactoring 
problems, centralizing things, and then open sourcing that. And that open source is what we call 
Abseil. It's a lot of infrastructure pieces. It's things like mutex, and command line flags, as well 
as very high-performance hash containers, utility code. And this is the utility code that underpins 
effectively everything at Google. 


I kind of joke, I don't think it's actually a joke, you probably can't get more than six feet away 
from code that I've touched without making a conscious effort. Because everything that Google 
has built has the Abseil dependencies in it. Well, not everything, everything, but almost 
everything. [inaudible 00:41:36] somewhere. So it's our sort of nuts and bolts, as it were.


[00:41:44] KP: if I understood correctly, you highlighted, I guess, prioritizing some performance 
improvements as one of the motivations. As a user, I guess someone like myself would just 
benefit from those without even knowing it. Are there interesting things going on in the C++ 
language or has it just kind of solidified given its longevity?


[00:42:04] TW: No. I mean, that to me wrong. The languages preceding the C++ 20 release is a 
very, very large set of features. My concern, and I think Google's concern, has largely been that 
things like binary stability is dominating performance concerns. 


And so, for example, because of the default assumption from compiler vendors that they can't 
ask their users to rebuild, this means that the hash containers in the standard, depending on 
your compiler vendor, probably are maybe 10 years old. There're design problems in them as 
well that kind of contributes to the inefficiency. But we've done a staggering amount of hashing 
research in the last 10 years. And it's worth a pretty significant fraction of fleet performance to 
be able to update your hashing, at least if you have compute profiles like we do. 


© 2021 Software Engineering Daily 16



SED 1383 Transcript

And when it comes to, “Hey, we can use the standard types, or we can refactor everything and 
do it ourselves.” And it will be worth some percentage of fleet performance to run our own 
hashes and run around hash containers. If the standard is unwilling to ask people to rebuild to 
adopt such changes, then I think we're just going to go our own way. And that plays out kind of 
over and over again. Like we like our interface for mutex better, and I think it's more efficient on 
most platforms. The hashing is wildly more efficient. And you get various aspects of that. Like 
the standard regular expression libraries are terrible. There's a joke that it may be faster to fork, 
spin-up PHP, and do your regular expressions then to use standard regex. 


But at the same time, like I don't know how much of a joke it is, and because we won't even ask 
people to rebuild, that problem is never going to get fixed. Like at most, there'll be a std regex 2. 
And that's not an entirely satisfying answer. So it's hard. I can't say that prioritizing stability is the 
wrong choice. It's very good for not frustrating users. But performance does matter.


[00:44:28] KP: Absolutely. Well, I found software engineering at Google, lessons learned from 
programming over time to be a great resource. I think there's lessons to be learned for people at 
all stages in their software engineering career. Remind listeners where they can get the PDF or 
print copy.


[00:44:44] TW: Print copies at any fine retailers, certainly Amazon. The PDF, if you search for 
software engineering at Google, there is a link on abseil.io that has a PDF to download from 
there. And that is fully licensed, totally legit. Our goal with the whole project is to try to give back 
to the community and to provide some foreshadowing of the lessons that we had to learn the 
hard way. And hopefully, if your companies grow and you're successful, that you don't have to 
learn everything in quite as painful fashion as we did.


[00:45:21] KP: Absolutely. And Titus, where can people follow you online?


[00:45:25] TW: I'm on Twitter @tituswinters. 


[00:45:28] KP: Sounds good. Well, thank you so much for taking time to come on Software 
Engineering Daily.


© 2021 Software Engineering Daily 17



SED 1383 Transcript

[00:45:33] TW: Thank you for having me. It's been a pleasure.


[END]

© 2021 Software Engineering Daily 18


