
SED 1376 Transcript

EPISODE 1376


[INTRODUCTION]


[00:00:00] KP: The Internet is a layer cake of technologies and protocols. At a fundamental 
level, the internet runs on the TCP/IP protocol. It's a packet-based system. When your browser 
requests a file from a web server or an MP3 file from a podcast feed, that server chomps up the 
file into tiny pieces known as packets and puts them on the network labeled with your machine's 
address as the destination. That system obviously works incredibly well for receiving a file from 
a web server. And if some of the packets arrive out of order, that's not a problem. If one is lost, it 
can be sent again. 


There are no guarantees in a packet-based system. No direct connection. If a flood of new 
packets show up, the system can slow down and you may experience a lag in response time. 
This can be annoying when visiting a blog that is slow to load, but it's not really a ruined 
experience. 


Streaming video on the other hand does not degrade elegantly in this situation. No consumer 
wants to have the experience interrupted with a spinning wheel. Traffic can be spiky and 
unpredictable especially around live events. All this is to say, the stakes are high for building a 
scalable, efficient streaming video solution. 


Amit Mishra is a member of the team at FOX, which is responsible for building platform to live 
stream content across the FOX properties. In this episode, we discuss some of the technical 
milestones in delivering this platform and why Golang was the right choice. 


[INTERVIEW]


[00:01:27] KP: Amit, welcome to Software Engineering Daily.


[00:01:30] AM: Thank you.


© 2021 Software Engineering Daily 1



SED 1376 Transcript

[00:01:30] KP: So can you tell me a little bit about where your career journey in software 
began?


[00:01:35] AM: Yeah, sure. I have been in software industry almost for 17 plus years and most 
of my career has been into media and entertainment industry. I have been working on mostly 
backend space for various clients and playback kind of scenarios.


[00:01:53] KP: What's some of the technology that you've worked with throughout your career?


[00:01:55] AM: Yeah. Some of the technologies that I have been working on, I started my career 
as a Java developer. From there, I continued on working on those things like almost a decade. 
And then slowly I moved into PHP space a little bit because of requirements from the product 
point of view. Then I again went back to Java, because that was my kind of like original love. 
And then I moved to Golang space. And since then, I've never went back to any other 
technology space. 


[00:02:29] KP: So it sounds like you had some success migrating from Java, Node.js, to 
Golang. That's a path other technology groups might be thinking of following. Is it always the 
case that you think someone working in Java and/or Node.js should probably migrate to 
Golang?


[00:02:43] AM: To be honest, no. The choices should depend on what exactly you need. So it's 
around 2016, I think. Actually, 2015, I would say. We were looking to rewrite couple of things in 
our platform. And we used to be a big Java shop. And at that time we had recently migrated 
everything to PHP-based system. But then we started having you know lots of performance 
issues. And then quickly we also migrated so many things to Node.js system, and then we had 
the similar kind of issues. 


Then one of our colleague had a very good experience with Golang, and then he kind of 
suggested that to POC. And then we thought, "Okay, let's try this out also," right? And this is 
where we kind of like started writing like a small POC, which was greatly received by all the 
devs, especially most of them coming back from Java and Node.js background, but they all 
loved the simplicity of Golang. And me, also as a software engineer, loved that whole idea of 

© 2021 Software Engineering Daily 2



SED 1376 Transcript

simplicity. So we kind of stick around it and then we kind of like move forward with that idea at 
the organizational level. So, yeah, my answer would be like choose based on what you need. 
And for all use cases, I think Golang was the choice most of the time. 


[00:03:57] KP: Well, to hear that you have one developer working in maybe Java, showing 
appreciation for another language is promising. A lot of people are dogmatic in that regard. But 
at face value, it seems like maybe they just appreciate the syntax, or the data structures, or the 
design of the code, something like that, the elegance of how to write it. But it seems to me 
there's something more you're looking for in a migration to Golang. What are some of the 
features beyond the ones that a developer would appreciate that will motivate the move?


[00:04:25] AM: Yeah. So as a developer, when I say simplicity, like simplicity not only for the 
syntax, also the speed of developing your software itself. So one of the thing we found with 
Golang was like our speed to deliver the software increased like 100 times. Whenever we used 
to write a Node.js-based services or the Java-based services, the development time for those 
used to be like, let's say, for a simple service, used to be like more than one sprint or two weeks. 
But with Golang, that simplified a lot, and that whole thing went down to two to three days. And 
that was exact same thing, exact same business logic, but the kind of speed Golang provided in 
the development process was incredible.


And not only that, like the performance itself, the Golang itself was like so lightweight. Without 
doing lots of tuning at the language level, we were able to get the kind of performance we 
wanted to have by default, which was like great sell for us, because in this case, without having 
very lots of experience in a particular language, we were still able to build a performant 
software. So that was the great thing to do. And that is what like kind of started giving us the 
confidence in this direction.


[00:05:38] KP: That speed up is obviously hugely appealing. I'm not sure if I have the core 
insight yet. What really is the root cause of such an increase in delivery time?


[00:05:47] AM: Yeah. So this is not against any language, just a disclaimer, right? And since I 
have been a Java developer almost more than 12 years. So I really appreciate Java as a 
technology. And I still code on Java. But one of the problem with Java or even the Node.js is like 

© 2021 Software Engineering Daily 3



SED 1376 Transcript

it these kind of things comes with lots of baggage surrounding their ecosystem. And because of 
that, onboarding process for a particular engineer becomes very hard. Similarly, whenever you 
are writing a program itself, compiling itself is very, very slow. And this is where like you get 
stuck into that loop where you are debugging particular issue. But because of the language 
framework, you are stuck in those like couple of hours, right? So these small things count. 
Where in Golang, these things are very simplified, right? Like your syntax are so simple that you 
don't need to rely on end-to-end deployment in order to find any things, right? 


Inherently, whenever you are writing any program in Golang and kind of like building it and 
running it, that process itself takes couple of seconds compared to Java or Node.js, where it 
takes like couple of minutes, right? So those small, small things counts a lot during a 
development process itself. So that's one of the thing. 


Another thing was like the performance point of view, like I wouldn't bring up like we ran like little 
like three simple POC. We did a comparative study with Java. We wrote a similar service in 
Java. We wrote a similar service in Node.js. And we wrote the similar services in Golang. That 
was one of our account service. And when we run the load test, we found like Golang link 
service was like much more faster than Java. And this is coming from like the devs who did not 
have any experience on Golang. It was just simple modification, simple translation from one 
language to another language without doing – And all the three platforms were running on 
default settings. No tuning there. So that's another thing which came into that. And then we just 
rolled with that in production and it just saved us so much cost and energy in that direction.


[00:07:48] KP: Let's just go ahead and label it a rumor, because I’ve only heard this from one 
person. But they had done some work and Go and had some very early success, and their 
complaint was that it wasn't a rich ecosystem of libraries. So if they needed some connection to 
this or that, they might have to write it themselves. What was your experience like? 


[00:08:08] AM: So that was definitely an issue for us when we started, honestly. But it was not a 
blocker, because kind of things we wanted to have, those were already part of the ecosystem. 
One of the thing we wanted to do using Golang was we wanted to move towards a 
microservices kind of architecture. In Node.js, we already had those kind of things by the way. 

© 2021 Software Engineering Daily 4



SED 1376 Transcript

All our services, microservices were written on Node.js and in Java. Those were written through 
the Spring Boot. 


So when you come from Java Spring Boot kind of ecosystem and suddenly write the services in 
Golang, then you are definitely going to miss those features. Like there are like production-
ready endpoints in Spring Boot. You don't need to worry about for health checks and all those 
things. Those are already part of the ecosystem. But in Golang, you got to write all those things 
on your own. But I think those things are so simple. It's kind of accepted, I would say, drawback 
in a sense, because you get out of it so much that all those kind of things you don't miss end of 
the day. So that's how our experience was. 


Like we also missed couple of things in Golang. But then we slowly moved and then we opted in 
for like various libraries. And honestly, Go community is so strong and they're so helpful. I got so 
much help from the community whenever we had an issue. So that kind of like simplified lots of 
things for us. I would give an example of circuit breaker. Circuit breaker already had a library, 
which we just opted in and then it just ran for us. It worked for us. There are lots of other simple 
examples which we got help from the Golang as a community.


[00:09:40] KP: Well, in comparison to a framework like Spring and the whole Spring ecosystem, 
there's a big maturity there. So you get a lot of things. It occurs to maybe that sort of is a 
monolith framework and maybe all those advantages don't pay equity in a microservice world. 
Would you agree with that? 


[00:09:56] AM: Yeah, I would agree with you. Spring itself is a like very old framework and then 
a Spring boot kind of like more of the microservice towards your framework, right? So it has lots 
of features. So as a dev, you get lots of things out of it. But think about it like it comes with lots 
of its own baggage, because you have so many packages, so many jars as part of this whole 
ecosystem, which takes time to compile and make it bill ready, or production-ready service. But 
in case of Golang, all those things are not available, but writing those things are so simple that 
you don't miss those things. And the thing is that you can write those things in the way you like 
it. You don't have to rely on mercy of a particular framework. You have to stick with those kind of 
things even though you don't want those. So that's one of the thing, like Go kind of provided us 
the opportunity to choose and go based on what we needed. 


© 2021 Software Engineering Daily 5



SED 1376 Transcript

And that was one of the reason. Like when we opted in for the Golang-based software, one of 
the reason, like most of the dev started asking us like, "Hey, what are the framework we are 
going to use? Java has a Spring boot, right? They have already been built for writing all these 
service layers. In Golang, what kind of framework we are going to use? And we consciously 
chose to write our own framework internally because we kind of like analyzed or researched lots 
of frameworks available using Golang to write the services. But those had so many different 
features, which we never needed. And those also had the similar kind of issues with Java might 
introduce into a system. So we kind of like rewrote everything, which we needed at that point of 
time, and then we continued it. Like, okay, at that point of time, we just needed to write a simple 
Rest endpoint. We did not want it to have any kind of other functionality as part of that whole 
thing. So we just wrote simple handler for that supported by some kind of data store, right? I 
don't need to think about supporting 10 different data store as part of my service, right? It should 
have just one support for one data store. Let's run with that, right? Why should it include 10 
different data stores and libraries unnecessarily? 


Similarly, I would say, circuit breaker, as I said, right? In a couple of services, we did not need 
any circuit breaker functionality. Then why the service would have those kind of dependency at 
compile time, right? So we had the opportunity to basically not to go with those and just rely on 
that default Go language feature to write those kind of things.


[00:12:11] KP: Well, in my experience any group that's doing a serious Java project at scale is 
eventually going to have some challenge related to the JVM doing garbage collection. It's going 
to do that full pause, scan, all that, and require some fine tuning. Does that get better, worse or 
the same in a migration to Go?


[00:12:29] AM: It becomes much better in case of Go, honestly, because I remember struggling 
with Java to come up with those settings all the time and find that sweet spot. But once you find 
that sweet spot, you will not have any issue. But reaching to till that state is a big thing from the 
product point of view. But in Golang, we never had those kind of things. Like we just ran with 
whatever came out of box. Slowly we learned more things. If we were able to write a good Go 
program, it was already memory-optimized. We did not have to worry about any of the garbage 
collection kind of issues in this case. 


© 2021 Software Engineering Daily 6



SED 1376 Transcript

Interestingly, recently, we had an issue. But then later it was found that it was our code. It was 
not a language problem. It was our code, which had these excessive memory utilization 
problems. And Golang provided us the way to optimize those. And then we went back to our 
normal situation. 


[00:13:18] KP: Well, these all seem like good indicators that Go is a useful tool for your team to 
be leveraging. But you're not going to just do a full rewrite of the whole system. How do you look 
for the right opportunities to introduce a rewrite?


[00:13:30] AM: That's a very interesting question, because this is what we have been doing in 
the last year so. So, yeah, I mean, most of our platform was either on Java or the Node.js. like I 
would say like since we were migrating from Java to Node.js, so most of our platform was in 
Node.js, right? But then when we started having issue with Node.js, then we made a conscious 
choice to migrate to Golang. But it was not an easy task for us. So the kind of approach we 
started following was like implementing a simple Go proxy on top of each of these services. And 
honestly, like just writing the proxy service on top of existing Node.js legacy service gave us the 
performance boost. And that, we don't know how did it happen. Honestly, like we were also 
amazed like why this is happening, right? How come Go is able to optimize these things, which 
is just take same request and passing the response from the underlying services. But the way 
Go was able to manage their resources, that was incredible. So that's what we did. Like we did 
it in couple of stages to be honest, right? Like let's say we had a service which we wanted to 
migrate, we just started writing like simple proxy on top of it. Once we had the Golang-based 
proxy in the background, we started basically swiping small, small component with Golang and 
started doing the comparative testing. And once we got that confidence based on our 
comparative testing, we kind of like went through and removed the whole proxy layer, because 
now our whole service was already on Golang and we were able to publish it out. But just 
swiping the whole service in one shot from legacy to a new microservice is not doable, or is not 
practical. Just because the kind of space I work on, like on live streaming space, it's not 
possible. We have the events every week, right? So kind of risk is very high if we do those kind 
of experiment at that moment.


[00:15:25] KP: What are some of the challenges in doing live streaming?


© 2021 Software Engineering Daily 7



SED 1376 Transcript

[00:15:28] AM: Yeah. So one of the biggest challenges in live streaming is like it's live. You do 
not get the second chance. Once you have that moment passed, then that's it. You are done. 
You lost – Like if something goes wrong during live streaming, then you already lost your users. 
And not only you lost those users for that moment, it might impact your image also, lost that 
user forever. So that's a very kind of like unique challenge to handle. And other challenges are 
like the business challenges, where you got to deal with the number of concurrent users 
dynamically, because you cannot predict that how many users are going to join at that moment 
when the game or a particular event is happening on, right? You can predict little bit, but 
honestly it's never correct, right? There is always slight chances where on a particular game 
there is moment happen when everyone got interested and then suddenly you have the flood of 
traffic, which you cannot control. So managing those kind of expectation at that moment is very 
difficult. And this is where like most of our challenges comes into the picture. 


[00:16:36] KP: So in that regard, I mean, you could, I guess, fall back on what the cloud offers 
natively. There are some you know scalability solutions built into all the major services. But I’m 
not sure they're built for every single use case. Where do you guys fall with that? Do you lean 
into a cloud provider or do you have to do something custom?


[00:16:53] AM: We use AWS as our cloud provider here. And we depend on them for lots of 
things. But for a couple of things we cannot rely on. Like because whenever there is any live 
streaming going on and if there is a flood of traffic coming in, then depending on your system 
might not auto scale fast enough in order to support it. For those kind of things, we came up 
with our own ideas like implementing our own caching kind of system and then implementing 
some kind of like fail-forward scenarios at our end. Those kind of things, like we had to come up 
with our own things. So yes, we depend on lots of things on AWS. But at the same time, we had 
to come up with our own ways to handle these kind of things.


[00:17:33] KP: What's unique about your situation that maybe couldn't be covered in the 
standard cases that Amazon had prepared for?


[00:17:40] AM: Yeah. I mean, one of the scenario I would say, like let's say app crash kind of 
scenario. Like let's say you have some kind of live event going on. Let's say Super Bowl, right? 

© 2021 Software Engineering Daily 8



SED 1376 Transcript

You have all the users logged in and suddenly your app crashed. Of course the app should not 
crash, but things happens. And when it happens, like all these users are going to retry the 
stream. And as a user, we are going to click or retry multiple times. And I don't even know like 
as a user how many times I’m going to click until my stream is going to load, because it's such 
an important game. I want to watch it at any cost before I can try another provider. 


So in this case, you can think about like amount of traffic a one user might be sending, 
unexpected traffic. So now when you multiply this traffic between millions of concurrent users, 
then this becomes totally unmanageable traffic, right? For this kind of scenario, we had to come 
up with an innovative way of like implementing various patterns like single flight kind of pattern, 
or throttling at some level of the service, level, right? Or if things are going out of control, then 
how do we ensure that those are not client-initiated retried? All those retried are controlled by 
us, not by clients, right? So those kind of things we kind of like came up with, where AWS 
couldn't help us, but we had to implement on our own.


[00:18:58] KP: So it makes total sense to me that you cannot predict these spikes in traffic. 
They're random noise in many ways, unexpected things. But is it so hard that it's not worth 
trying? Is there any ML or anything going on in the background trying to give you a prediction 
that's useful? 


[00:19:14] AM: Yeah. Like we have those analytics always running in, right? And we always 
have those numbers. And based on those numbers, we are ready with event. Like we always 
scale in advance so that expected amount of the traffic can be handled. But these things can 
happen internally also, right? Like where one of your service for some reason is not performing 
the way you are expecting due to some unexpected reason. And that can basically create 
pressure on other microservices. So those can be your internal reason, but it's still 
unmanageable. So even though we had auto scaled our system enough in advance, but still you 
have those kind of things happen. But since those are internal issue, it doesn't mean that it 
should ruin your client experience or user's experience, right? Because we got to have our 
stream or the things playing without any problem. So those are couple of things like we have to 
keep in mind whenever we are like implementing these things. 


© 2021 Software Engineering Daily 9



SED 1376 Transcript

[00:20:09] KP: It seems like there's more than one, for lack of a better phrase, plan of attack 
you can take here. There's maybe caching you could do. There's having a pool of warm servers 
to pick up as you need them without cold start. Maybe there's other techniques I’m not aware of. 
Is there one clear winning strategy you're chasing? Or are all these things on the agenda? 


[00:20:31] AM: Most of the time, we rely on caching. But at the same time it's a combination of 
different, different strategy based on the traffic or dynamic nature of the event we are expecting. 
So let's say there is an event. I will give an example of Super Bowl itself, right? During Super 
Bowl, our goal is to have this uninterrupted experience to users at any cost. During Super Bowl 
kind of scenario, like sometime your event is so important that other features kind of like might 
be little bit less important at that moment because your streaming with Super Bowl is more 
important. 


For those kind of scenario, we have our own defcon con mode kind of implementation where 
like we run on normal mode all the time, right? But let's say if there's an infrastructure failure or 
anything happen, at that moment in time, how do we ensure that we can still serve the Super 
Bowl or the event itself? For that, we have like something called like defcon zero, where we can 
just feature flag it and it just basically redirects our traffic to a different region itself and we can 
run from there. And even if that reason also, let's say different reason also goes down, then we 
have our internal failure scenario implemented in this case where we can also rely on some 
different kind of infrastructure where we can start serving the stream from. So that's one of the 
thing for like most important event we do. Other than that, as I said, like we rely on mostly like 
caching and I would say fail for what kind of scenarios we have implemented.


[00:22:03] KP: It makes total sense to me that you would have strong operational procedures 
like what you described. This happens, you have pre-planned the execution of what to do, 
because these are such important events that you shouldn't be thinking on your feet, right? You 
need to have a pre-calculated solution almost. With that in mind, maybe I’m curious if you see it 
a different way, but I guess my question was going to be do you have to run drills or war games 
around this kind of thing? Because you don't want to learn during an actual emergency.


[00:22:30] AM: Oh, yeah, definitely. Yeah. Before any big event, we have months of drills 
running. In fact, like for 2023 Super Bowl, we have already started preparing for. So each and 

© 2021 Software Engineering Daily 10



SED 1376 Transcript

every big event before that we basically prepare our mock events where we run these trails. And 
we, on purpose, bring down certain part of our infrastructure and see how we are behaving. can 
we still serve the stream or not? So there are lots of things goes in background in order to 
deliver the final version of the event itself. So yes, I agree. I totally agree with you in this case. 
Like, yes, we do have like lots of drills happens over the period of time. And those things, the 
frequency of these things increases. We are more closer to the events, to be honest. But the 
way things are organized, we have very little chance to react also. So this is where like we have 
to be ready in very much advance. 


[00:23:21] KP: Could we talk a little bit about the playback platform? I don't know that listeners 
will be aware of it. Perhaps you could start with what the solution does.


[00:23:29] AM: Yeah. Basically, our playback platform, like recently we wrote that whole 
platform into Golang. And this playback platform is nothing but simply like how do we ensure 
that we deliver the end-to-end playback experience to the users? So as part of this platform, you 
basically deliver the streaming playback URL. Of course, you have to deliver some kind of 
analytics from the clients. And also the most important piece is like analytic metadata, because 
whenever there is any live streaming going on, there are ad markers, right? Based on those ad 
markers you want to deliver the right ad to the user. And during that point of time, since those 
markers are so dynamic in nature, going back to the back end in a dynamic manner at the same 
time and getting the result and serving the right ad becomes very crucial especially from the 
revenue point of view. So that's one of the critical thing it does. 


Apart from that, playback platform also handles like various challenges. The challenges like 
game extension. Because any live event, all the programs have some schedule. So that's how 
we also do that here in our case. Like we have everything scheduled in advance. But in case of 
live event, if the game goes over time, your schedule kind of disturbs. In this case, you have to 
basically, manually, from the content operator point of view, go back and reschedule everything 
and then just to extend for couple of minutes. And also you don't know how long that game will 
be extended. Like you can predict, "Okay, it will be 15 minutes, or 20 minutes, or 30 minutes." 
But you cannot predict exact moment, "Okay, this is when this is going to end. And this is when 
my next program boundary should restart," right? 


© 2021 Software Engineering Daily 11



SED 1376 Transcript

So coming up with that kind of prediction and then extending those kind of events right at the 
moment is riskier also from the digital streaming point of view because, in your backend, it 
resets lots of things. You cannot rely on the caching for this kind of scenarios because it's going 
to create thundering hard kind of problems, right? So this is one of the main feature like our 
playback platform needs to support in general. Other than that, like standard expectation from 
any platform where it should be scalable to millions of concurrent users and it should be resilient 
enough and fault tolerant enough so that we can support things the way they should be. 


[00:25:43] KP: Well, any stream processing system at some point has to manage the debate, 
do we want to run with batch mode calculations, or be totally event-driven, or some sort of 
hybrid? Where do you fall on system design? 


[00:25:57] AM: It's kind of a hybrid I would say. So what we do, like most of our contents are like 
in live streaming, as I said, like dynamic. But we can still calculate couple of things in advance. 
When I say advance, not like in advance couple of hours before, but at least couple of minutes 
before. And this is where we use – Like I would give an example of latency, right? Whenever 
any broadcast event is going on. So there will be some latency from broadcast to digital 
streaming, right? And that is the thing we kind of like use in our benefit. There is latency. So like 
before the streaming is going to propagate into different clients, before that itself, we get all 
those requests into our system and that kind of like helps us to cache the data. So we use that 
drawback in our benefit in order to kind of like serve the dynamic traffic at scale. Not only that, 
like we also have done some analysis like that, okay, these kind of metadata are going to be 
available in advance. So we are kind of ready with those. And these kind of like metadata are 
not going to be available. So how do we basically create those buckets for dynamic data so that 
even in case of failure it impacts us very less from the future point of view without impacting the 
streaming? 


[00:27:09] KP: It seems to me you have a tremendous potential to generate volumes of data 
even greater than what you're transmitting if you really wanted to have full grain tracking of 
events and things, you can't possibly store everything. How do you approach what to keep, 
what to throw away, what to aggregate and that sort of thing? 


© 2021 Software Engineering Daily 12



SED 1376 Transcript

[00:27:26] AM: From data point of view, we try to collect as much as data we could. And 
honestly, like for this particular playback framework, we do not store any data at our end. Like 
it's all read only from our end. So it's all from like what clients are requesting from. But being 
ready for that kind of data, that response is kind of tricky, because each request is basically a 
unique client request. Because as a user, when you come to a stream, you are a unique user. 
You will have your own location or DMA and own IP addresses. And based on that, what kind of 
stream we are going to serve is a different thing. And these things becomes more complicated 
when the subscription scenario comes in the picture, because as a user, you may or may not 
have the subscription or the entitlements to play a particular event. So these things becomes 
more dynamic in this nature. 


But to answer your question, from the data collection point of view, we send lots of data, we 
collect lots of data into our data analytics portion. But from the playback API point of view, we 
kind of ignore those requests, data collection request. So the traffic you're handling, correct me 
if I’m wrong, I think it's really the video data or maybe compressed video day that you're 
shipping to viewers. Is that right? 


[00:28:35] AM: Yes, right. Yeah.


[00:28:37] KP: So there's some – I think watchers will be forgiving within a few seconds, right? I 
wouldn't even know if my neighbor was getting the super bowl three seconds – Maybe I’d know 
that because somebody cheered or something. But if I was a minute lagged, I’d probably be 
upset. You have a certain amount of wiggle room there, I guess, before users become upset. Is 
that something you optimize towards? 


[00:28:58] AM: Yeah, definitely. That's one of the like our main focus, is like how do we reduce 
that latency between clients and even from the broadcasting point of view. Recently, we have 
been working on the latest features where this latency is going to decrease a lot. Like I think 
current latency is like around 30 seconds, 30 to 40 seconds. But once we release this new 
optimization, we are expecting our latency to be decreased to maybe 10 to 15 seconds. That is 
a big improvement industry-wise. And we are all kind of like very excited about it. But definitely, 
you're absolutely right. Even in testing or while supporting these events, whenever we are 
playing these events on different clients, we can definitely see that kind of lag where one of the 

© 2021 Software Engineering Daily 13



SED 1376 Transcript

SRE team, they are watching the event that point of time and they suddenly cheer and we are 
like another room, "What happened there? We don't know." And after a few seconds we know, 
"Oh, wow! Something happened in the game and we just came to know about it," right? So 
those things, there are always scenarios where these kind of things happens and our goal is to 
reduce that kind of latency as much as we can.


[00:30:05] KP: So I definitely see your motivation to do that. But it seems like some of it's out of 
your control. Like you send the packets off from your servers. Eventually they go on to the 
backbone and find their way onto my home Internet provider to get to me. You don't own every 
hop. How can you account for that?


[00:30:22] AM: We cannot control those parts. Like there are a couple of things which we do at 
the player level itself, where we can help with the bandwidth issues or we basically deliver the 
right package size or the bit rate based on the Internet speed. But other than that, we have not 
done that much on that space honestly. Most of the optimization at the player level where we 
can opt in for. 


[00:30:45] KP: What are some of the open challenges you guys are working on now?


[00:30:48] AM: One of the biggest challenges, as I said, we are working towards like preparing 
for the next Super Bowl, which is like prepping for at least five times of the traffic compared to 
this year. And since we are rewriting all those things into Golang, so we have learned on lots of 
things on the way. A couple of things we have learned that, okay, architecturally, we have the 
challenges. And how do we address on those things? One of the thing, as I explained to you 
previously, was like still serve millions of concurrent users. How do we aggregate or serve the 
API responses, which are user agnostic or the platform agnostic? Because, currently, everything 
is so unique. Caching those things becomes much harder. And because of that, your scaling 
capabilities are limited. So in order to handle those, we are looking forward for ways to 
implement our APIs in such a manner which are client entitlement agnostic. That's a pretty 
interesting challenge. 


Once we can solve the responses, which are client agnostic and user agnostic, in that case, 
serving a standard live streams becomes much simpler, because after that we will have the 

© 2021 Software Engineering Daily 14



SED 1376 Transcript

capabilities to cache couple of things at the CDN level itself. And after that, your scaling 
capabilities increases infinitely. 


[00:31:59] KP: So in terms of what you're working on now and some challenges you might be 
facing in the future, what are you and your colleagues thinking about?


[00:32:05] AM: One of the challenges we have been working on was like a strategy for zero 
downtime while service migration. As I explained, one of the pattern we implemented from 
migrating from Node.js to Golang-based services. But even in that pattern we had the 
challenges. So we are still kind of figuring out, "Okay, how do we still ensure that we can 
migrate any of our legacy system without downtime?" Another strategy we have been working 
on basically are r multi-region strategy. I’m not sure if I told you that currently we use 
Elasticsearch as most of our data store capabilities. And until today – Actually, until last month, I 
think, AWS did not have any capability to replicate the Elasticsearch data to different region or 
different cluster. And because of that, we had very limited options when it came to some traffic 
from different reasons because you don't have your data store replication enabled on fly. AWS 
has recently announced they have the cross-clustering replication enabled. So this is one of the 
thing we are going to implement as part of our multi-region strategy. So pretty much interesting 
topic on this thing and looking forward to implement it.


[00:33:17] KP: Well, Amit, thanks again for coming on Software Engineering Daily.


[00:33:19] AM: Thank you so much. It was fun to talk with you.


[END]


© 2021 Software Engineering Daily 15


