
SED 1371 Transcript

EPISODE 1371

[INTRODUCTION]

[00:00:00] KP: It wasn't that long ago that many companies scheduled downtime in order to 
release an updated version of the software that runs their website. That's rare today. Most 
developers want continuous testing, integration and deployment continuous everything. With 
that comes many benefits. It also places greater demands on quality engineers who can no 
longer gate all updates into a single infrequent release. Liliya Frye is the director of QA 
engineering at LeagueApps, a provider of sports league and team management software. In this 
episode, we discuss Liliya’s experience and modern practices for successful enterprise 
strategies.

[INTERVIEW]

[00:00:43] KP: Liliya, welcome to Software Engineering Daily.

[00:00:46] LF: Hi, Kyle. Thank you.

[00:00:49] KP: To kick things off, can you tell me a little bit about your journey as a 
technologist?

[00:00:49] LF: I'd say I've been in IT for the last 24 years in web development roles, testing 
engineering, managerial roles and different leadership positions. I specialize in creating quality 
engineering processes with continuous testing, shift left, and shift right methodologies with 
continuous monitoring, continuous improvement in scaled agile software development life cycles 
with strong focus on customers, teamwork, and organizational overall success.

[00:01:29] KP: Could you share a few details on what you mean by shift left and shift?

[00:01:33] LF: So, shift left and shift right, one of the methodologies that specifically shift left 
testing was introduced by Larry Smith in 2001. Now, it's been 20 years ago, where he 
mentioned that bugs are cheap when caught young. He introduced the mindset where the 

© 2021 Software Engineering Daily 1



SED 1371 Transcript

quality in testing should start early in software development lifecycle to reduce the number of 
bugs and the quality ownership, means better requirements, better design, better code and 
better test. With shift left, he also mentioned that the quality is owned not only by the quality 
engineering team or quality assurance team, but it's owned by the entire engineering team, 
including product managers.

With shift left, the quality engineering team members, there are part of the agile process. And 
they're embedded with the scrum teams with the squads. With shift left, we continuously 
thinking about how can we test throughout the multiple stages in software development 
lifecycle. And shift right, it's method of testing in monitoring in production. This approach helps 
developers to uncover new unexpected scenarios, that could not be detected in lower 
environments. And their way we can fix bugs before the users find it.

However, shift left, it's specifically for – usually we test in production manually. In automation, 
you have to be very cognizant in which area of application you introduce with shift right 
methodology.

[00:03:54] KP: You’d also mentioned one of my favorite buzzwords, and that's continuous and a 
couple of areas of interest and areas of expertise you have, whether it's something continuous, 
or maybe a different philosophy or project, are there any standout improvements or schools of 
thought that have come around in your career that are starting to really shape the way people 
build software?

[00:04:15] LF: The continuous, I see it as we are not – if we set up processes, and especially 
for quality engineering, you create strategy, you set processes, the processes that you set up, 
it's never going to be written in stone. You have to continuously think how can it be better? How 
can we improve it? And improve it with like a different QA strategy, different environment 
strategy, execution strategy, data strategy? With automation, how can our automation in 
different areas in implementing the test-driven development, unit testing, integration testing, API, 
UI end to end UHC. We’re constantly thinking how we can make, create a certain flow, that with 
continuous integration, continuous delivery and deployment, that we find bugs and kind of fix 
them very early very smoothly, and they do not affect our end users.

© 2021 Software Engineering Daily 2



SED 1371 Transcript

[00:05:35] KP: Well, tell me a little bit about your current role today, and what led you to take an 
interest in that area?

[00:05:41] LF: Currently, I'm working at a LeagueApps, and LeagueApps is a fantastic 
company. We provide an operating system for youth and local sports leaders. We have an 
application that could be used on desktop web and also mobile application for iOS, Android. We 
support about 3,000 organizations, and our organization can also create through us their 
customizable website, which is branded. Basically, we provide the tools where you can create 
your own website that is presenting your organization, sports organization, and we provide you 
with the tools where the branded apps could be created for iOS and Android devices.

Mobile applications, specifically, help you with registration –not registration with keeping the 
schedule, make sure you're understanding what's happening, when are the games going to take 
place, when are the tournaments and you can communicate through our mobile application with 
your teammates, with your coach, with organizers. Let's say often, certain games are being 
canceled due to some weather or like emergency. So, then the typical push notifications are 
sent and people either parents or players can receive it very quickly. We're also working on a 
way where our mobile application would help players to engage more. We’re going to offer more 
features where they would learn more things about the particular sport they're playing, or they 
can engage more with each other.

So, there's a great kind of service we provide for sports organizations. And my responsibility is, 
I'm a Director of Quality Assurance Engineering, and I want to make sure that the quality of 
application is up to standards and our end users are happy and they can assist their players 
with all the necessary tools that they can just focus on doing their best, playing the game, and 
know when everything's happening on their schedule.

[00:08:25] KP: What's the team look like in terms of current size and growth plan?

[00:08:31] LF: Currently, our team is, I wouldn't say huge. We're very limited. But what's so 
unique about LeagueApps, we take the entire organization and our company is responsible for 
quality. And that's what I like about LeagueApps, that everybody, we're talking about the 
customer success team, the product management team, the developers and QA team. We're all 

© 2021 Software Engineering Daily 3



SED 1371 Transcript

thinking about testing, and everybody takes ownership and responsibility for quality. It's not like 
in certain organizations where if a bug appeared in production, and everybody is pointing fingers 
at the QA team, no, it's not like that. 

Here, if something happens, if some issue occurs in production, we all collaborate and work 
together and do the risk assessment and mitigation plan to figure out how can we prevent it 
from happening in the future and the growth, speaking of growing the team, since we're 
transitioning to migrating our old system into the new, the next generation, we are going to 
certain areas of application, going to be migrated into micro services. Therefore, we'll need lots 
of testing. Currently, my team specifically looking for a mobile aesthete, and also senior 
software development engineer and test, and the senior aesthete will be focusing on backend 
testing, API testing, and anything backend related and mobile listed, anything related to mobile 
applications, native, iOS, Android, automating. The test cases for mobile native and mobile web. 
Also, we're looking for a lots of engineering roles. We need front end engineers, platform 
engineers, senior backend engineer, senior senior front end, Android engineers, and we're 
looking for VP of engineering, who will help us to move to that next gen, with microservices 
architecture.

[00:11:02] KP: Very cool. Well, a lot opportunity there for many of the software engineers 
listening to this podcast. Where can they learn more?

[00:11:09] LF: They should go to our website, which is leagueapps.com, and under career, 
there should be, I think it's under company career. Yeah. Or there's another option to enter into 
browser, careers.leagueapps.com.

[00:11:35] KP: Very cool. Well, I'm wondering if we could zoom in on the roles that you're 
hoping to fill in test. What is it that you're specifically looking for, that people might want to beef 
up on? Or should have be an expert in already? What are the skills you need to add to your 
team?

[00:11:49] LF: So for my team, specifically, for a senior software development engineering test, 
we need somebody to test our API's that are built in Java, and somebody who is comfortable 
with JUnit, Mockito libraries, and the who had worked with Postman, and who can help us with 

© 2021 Software Engineering Daily 4



SED 1371 Transcript

building CI/CD. We're in the process of taking all our automation scripts into the CI/CD pipeline, 
and we need assistance with that. Somebody who integrated automation scripts with CI/CD, 
and who can help us to create the continuous integration delivery deployment, specifically, with 
understanding how are we going to trigger our automation scripts in one environment and how 
they're going to be moving from, let's say, from dev environment to QA, and to pre prod, and 
prod. Somebody who has in depth understanding of CI/CD integration.

We are looking to – we’re exploring different CI/CD tools. If somebody has expert in working 
with different CI/CD, may be Travis CI, GitHub auctions, and the majority of our applications are 
in Google Cloud, GCP and we have some in AWS. If somebody has knowledge of GCP, that 
would be great. And for mobile listed, we need somebody who has experience with Appium. And 
with Appium, specifically, we want somebody who knows how to build applications that build one 
framework, that could test immediately, the native applications, and the native application iOS, 
Android, and the mobile web at the same time with one framework. The language, that could be 
either Java or JavaScript. And also, the knowledge of CI/CD would be helpful.

[00:14:19] KP: I have used the headless browser Selenium to do some tests like front end test 
automation, in a couple of cases, not really my area of expertise. Is there a Selenium for 
mobile?

[00:14:32] LF: The Selenium for mobile would be Appium, because Appium is based on 
Selenium, and that's what we're going to use. Our front-end applications, I mean, the front-end 
automation scripts are in Cypress. Originally, we had in Selenium. However, we had so many 
flaky tests and we had so many issues and we transitioned into using Cypress We also will be 
looking for front-end automation engineers to build a lot of lots of end to end test in Cypress. But 
currently, there is no budget for that particular row, which will open up in January.

[00:15:19] KP: I’ve seen a lot of different approaches to where the line is drawn between a 
software engineer and a quality assurance engineer. Seems like every company has maybe a 
different take, and that's probably okay. But it also can be a place where there's conflict, if it isn't 
well structured. You could have a resentful QA person who feels the software engineer is being 
careless because they know that person is there to take care of them later or something like 

© 2021 Software Engineering Daily 5



SED 1371 Transcript

that. Do you have any philosophy or thoughts on how to draw the line between those two roles 
and know whose responsibility is whose?

[00:15:51] LF: So, you say, between software engineer and QA engineer?

[00:15:55] KP: Yeah.

[00:15:56] LF: Okay. I would say, the software engineers, they are more responsible for building 
test driven development. And also, for unit tests and some integration tests. Quality engineers, 
we build more like a functional unit test. Software developers would build like a sanity smoke 
unit test, very small. We're focused on more in-depth unit tests, and also integration tests. We’re 
responsible for API tests. Again, more in-depth suite and we're responsible for UI, anything front 
end testing, and building end to end test. UAT, user acceptance test, it depends on our 
organization. Some organizations, their QA responsible. Others, they have a different 
department. In our organization, we have product managers, who are responsible kind of with 
the engineering managers.

[00:17:15] KP: Make sense.

[00:17:16] LF: Yeah. In performance testing, we are actually sharing the performance testing 
responsibilities between QA engineers, and the developers, because there are certain 
performance tests could be done by developers. For example, they just want to make sure that 
they identify and test upper bounds, lower bounds, and they want to make sure that pagination 
is implemented. Our QA team, mostly doing some load stress and scalability testing.

[00:17:58] KP: Performance testing can be especially challenging in my experience, because 
even the best of everyone's intentions, we can't predict all the crazy things the users will do in 
the wild, especially if we have a very widely used application. There's going to be edge cases 
we haven't thought of. How do you approach the unknowns in a situation like that?

[00:18:20] LF: Usually, I try to create a plan where we identify a certain month of the year when 
we expect big concurrency of users. Usually, in our business, it's in the summer where we have 
tournaments take place and you try to create a plan where you do a stress and scalability test 

© 2021 Software Engineering Daily 6



SED 1371 Transcript

with multiple concurrence at the same time. The tools to use for performance testing, that could 
be either Gatling or could be JMeter, BlazeMeter. With performance testing, usually if you do 
some stress and scalability testing, you try to kind of increase the load request until your 
environment fails over, and with that particular stress testing.

For example, one thing I want to mention, this is more like on a personal observation. When the 
school started in mid-August this year in LAUSD, my son is a senior in high school here. On the 
first day, each student is supposed to present a daily pass. And on the first day, there was 
400,000 students had to present the daily pass. What had happened, LAUSD did not do 
sufficient performance stress scalability and chaos engineering testing, their service failed, and 
no one had access to their website. No student was able to produce a daily pass. Even those 
students who supposed to present a result for COVID test, if they had negative, those results 
were in their website, and they could not access that website either to show them if the result is 
negative to access on the premise of school.

It created a huge chaos on that first day, for about the students were standing outside for an 
hour or two, were not able to enter the school. So, for me, performance testing is extremely 
important. Especially when you know, on a certain day or a certain month, you're expecting 
huge concurrency of end users.

[00:21:01] KP: Well, a lot of continuous tools, continuous CI/CD, continuous testing, all these 
good things, it seems to me, there's a pretty strong agreement, everyone knows that company 
should move in these directions, this is the right way to go, it's the efficient path. Yet for some 
reason, anecdotally, I observe not everyone is quite there yet on the growth to a mature 
ecosystem. If you have to maybe convince someone that resources should be allocated or time 
should be spent really modernizing an infrastructure like this, what are some of the low hanging 
fruit or early gains that the company can expect when they place an investment in these areas?

[00:21:39] LF: So, I would say the most important area to invest is in deciding, first of all, which 
CI/CD tool to use, and deciding on what area of application would benefit from automation 
coverage. I believe, to improve the quality, you need a lots of automation, but you cannot 
automate everything you have to use, I would suggest to use Pareto Principle with the 80/20 
rule that you focus on automating the area that is the most used by your customers or end 

© 2021 Software Engineering Daily 7



SED 1371 Transcript

users. And your do your best to cover as much as area of application as many kinds of the 
different paths or different flow and take those automation scripts to CI/CD. There are deployed 
the automation scripts that are, you know, automation tests, they are triggered automatically as 
a part of the build pipeline.

Let's say, if the build is tested in one environment, then it propagates to another environment 
and another sets of automation script are triggered. And then after going to another 
environment, so you create this flow of continuous deployment and depends on the 
organization. Certain organizations are deploying to production automatically if it's a safe 
environment. I believe it's very important. Currently, to focus on continuous integration, 
continuous delivery in deployment, and look for talents that have experience with utilization in 
integration with CI/CD tools.

[00:23:53] KP: You'd mentioned step one being to pick a CI/CD, I don't know if you said 
platform. If I just impose that on here. Do you have any opinionated recommendations about the 
primary tools people should be considering?

[00:24:05] LF: Okay, I would say you have to know Jenkins for sure. Speaking of tools, there is 
debate, there is pluses and minuses with different tools. I would say, I cannot recommend for 
sure. GitHub actions, Travis CI. I had worked with Circle CI and GitLab Ci, but we had certain 
issues there. But it might work for other organizations. I would say it depends on organization 
what their specific needs. I cannot advocate for a particular tool, per se.

[00:24:49] KP: Totally makes sense, yeah. Well, Jenkins is a mature and established 
technology. It's been around, I think everyone knows the brand name. It's almost surprising that 
it hasn't been knocked off the king of the hill position in some sense. What about Jenkins makes 
it still relevant today?

[00:25:06] LF: You're right. Jenkins has been around for 10 years. And Jenkins, the benefit of it, 
it's open source and it's still relevant. The biggest benefit of Jenkins, lots of tools can integrate 
with Jenkins and we're talking about like Jira, different test management tools can integrate with 
it and different cloud service applications can integrate with a different cloud, like a pipeline. So, 
Jenkins also works more of a glue, even let's say you're going to utilize some other CI/CD tool, 

© 2021 Software Engineering Daily 8



SED 1371 Transcript

there are certain areas where Jenkins still works as glue connecting different parts together. I 
don't see Jenkins is going away. It's been great tool for one decade, and I see it's going to 
continue.

[00:26:09] KP: What do you think the general quality infrastructure stack looks like in the 
future? Are we just going to kind of continue on the path we're going on? Are there innovations 
that you think are going to come at play that make it easier in the future?

[00:26:23] LF: In the future, I see more of, we're going to use AI driven tools, which currently, 
there's certain companies provide services where you can write front end, end to end testing, 
with some AI, ML applications that can recognize certain flow that end user uses. Also, they 
have certain OCR algorithm to scan the page, and they build, they train their machine learning 
models, to kind of build automation scripts. Also, lots of cell healing tests would help with front 
end testing and some natural language automation.

What would really help, honestly, currently, there's just a limited number of companies that are 
offering that, but you have to pay for that service, not open source, and what would help in the 
future, to have certain open source tools that would offer that, because currently, the challenges 
is for a QA engineering team, to set up automation, to build a framework, have adequate skills 
on the team, and where are we going to run it, all the technical details, and also deciding what 
type of scenarios we should actually test just designing the test cases. If that particular area 
would be covered by AI/ML tool, it will really speed up the process. I really wish in the future 
where this kind of tools would be open source, so everybody can use it. If that would happen, 
then it would really put us on a next level of efficiency and checking the quality of our 
applications. I strongly believe it will improve the quality of web and mobile applications around 
the world for everybody.

[00:28:47] KP: What's an exciting vision as that starts to happen? And machine learning and AI 
are doing more of like, let's say the one second or low-level work that frees up a quality 
engineer to, as they say, stand on the shoulders of giants, how do you see it changing the 
current role and what professionals of the future will be doing?

© 2021 Software Engineering Daily 9



SED 1371 Transcript

[00:29:05] LF: I see that quality engineers will have to build a relationship with – it’s it's going to 
be sort of test op, ML ops, working together. And quality engineers might have to pick up some 
understanding of how to train machine learning models. If they want to sort of become more in 
demand in their organization, not only quality engineers currently, before they had to know how 
to write automation scripts for, let's say, unit API front end. And then they had to learn how to 
use continuous integration tools. Now, we're talking about they have to understand the machine 
learning technology and how to train models. So, that's kind of the future skills they have to 
obtain.

[00:30:08] KP: So, for a growing company, maybe one that's growing a little bit too fast on their 
successful product and the software side, and it's time to really make that investment in good 
quality pipelines and CI/CD and things like that. Is it useful to think of that as a onetime reaching 
some milestone and then being in kind of a maintenance mode? Can we say we're going to 
clean up all the technical debt, build all the CI/CD, and we're done? Or what does that 
realistically look like in practice?

[00:30:37] LF: Oh, you can never be done when you build CI/CD. Unfortunately, there is always 
going to be issues with test data or test environment. And with even CI/CD pipeline, you have to 
maintain it. The only thing what would improve is how fast you find bugs and how fast you fix it. 
And yet, with continuous integration, delivery and deployment, you have to maintain it. I would 
say, the only thing what could improve is, especially if we introduce an AI/ML, then our quality 
engineering team will be focusing on learning how to maintain it. That will kind of transition into 
the maintenance roles.

[00:31:37] KP: So, when thinking about some of the data that's going to flow through the 
system and the test data cases, you'd mentioned. Obviously, you can make up your own test 
cases as you go with any data, but it's not necessarily going to represent what it looks like in 
production. Companies are often protective of their production databases for good reason. I'm 
curious if you have any thoughts on how a quality engineering team, what relationship they have 
with real production data? Is it reasonable to get a batch of it and run tests? Or does it need to 
be anonymized? What are your thoughts there?

© 2021 Software Engineering Daily 10



SED 1371 Transcript

[00:32:12] LF: So, with testing and production, yeah, depends on the organization and what 
kind of data is flowing. I would suggest, yeah, there should be the careful consideration for 
testing and production and what exactly should be tested if some structural, or functional 
database. And I would say that, it should be the limited number of data flowing. The safest bet is 
to test any data quality in a lower environment.

[00:33:03] KP: So, when you have a nice CI/CD environment setup, if everything's working 
perfect, it's going to deliver great software. When a mistake is made or a bug is introduced 
somewhere, it should fail, right? It should find that error. And then something needs to happen. 
There's an operational procedure that maybe it's a little bit beyond the tool itself. Do you spend 
a lot of time thinking about how to triage?

[00:33:26] LF: Yes, we do. We also think about the rollback process, and especially talking 
about planning for the failure and making sure that our application is decoupled and are 
selecting the right technology. Especially, when rolling back, we are checking what exactly – 
how fast could it be fixed and what area. That is something we're constantly working on 
improving that process. Again, it's a continuous improvement and you learn on your mistakes, 
what had worked in the past. The goal is honestly, if you find certain issues in specially some 
critical issues, make sure you fix it very fast that end users will never find out.

[00:34:33] KP: When I think about doing a rollback, in my mind, it seems easier if I have some 
monolith. Yet there's such a trend towards micro service architecture. It feels like it might be 
harder to rollback there. I'm curious if that's the case, or if there's anything else about the 
popular micro service design that makes your job extra difficult?

[00:34:53] LF: I would say there is a certain area that with micro services, there is some 
dependency of one application into another. And we consider it when we build those 
applications to reduce that dependency, so that we can manage the rollback of that particular 
component, and that would not affect the sort of the other areas. Usually, we just diagnose it 
thoroughly to mitigate any – just to minimize any risk.

[00:35:35] KP: Make sense. Yeah. Similar question. I'm thinking about tools like Docker and 
Serverless, popular ideas that have come about somewhat more recently. And these are new 

© 2021 Software Engineering Daily 11



SED 1371 Transcript

challenges, you have to figure out how to do testing and build pipelines around them. Are there 
anything specific about containers or Serverless, that are novel or interesting from your point of 
view?

[00:35:55] LF: Speaking of Docker, it was introduced 10 years ago by Solomon Hykes. 
Basically, at the same time as Jenkins. We utilize Docker very heavily. It really helps us to use 
the pack shape and run any applications and virtually anywhere. With Docker, when the 
containers are created inside a virtual machine, they really provide this ultra-portable solution. 
Sometimes we can spin up some transient environments as needed. And of course, the 
Kubernetes that was created by three people, Craig McLuckie, Joe Beda, and Brendan Burns in 
2014. It really helped with container orchestration, to scale CI/CD pipeline, and where you can 
deploy containers in the cloud and schedule batch jobs and handle workloads and easily 
perform rollouts, it makes the whole process more efficient. That's when Kubernetes become 
handy. At our current company, we do not utilize Kubernetes yet, but we're working towards it. 
But that's one of the tools that I'd say every company should utilize.

[00:37:28] KP: We're certainly moving towards continuous everything and a lot of ways, I think 
for some good reason. And obviously, just from our discussion, I can imagine you're a big 
supporter of that. I'm curious if there's any pessimistic side to it. Does the rate at which software 
is changing and the tools we're making to allow it to change faster, is that intimidating or scary, if 
you're responsible for producing quality software?

[00:37:51] LF: I would not say it's scary. For team members in quality engineering or software 
developers, you are constantly learning something new, and you constantly adapt. And you do 
not think of, “Oh, I just acquire this knowledge of this tool, and I'm done for the rest of my life. I 
don't need to learn anything else. The whole system is going to work perfectly.” Absolutely not. 
In technology and software development and software testing, we're continuously learning 
something new every day, and we're looking for some new tools that will help us to improve our 
processes. With continuous integration, delivery deployment, we're still looking for a way how 
can it be better? Is there some better tool? And we're on the lookout for the most advanced tool 
or the technology that simplify our process, because the goal is simplicity.

© 2021 Software Engineering Daily 12



SED 1371 Transcript

[00:39:00] KP: Makes sense. Is there anything you think we should have gotten to that I haven't 
asked you about?

[00:39:06] LF: I just want to mention, again, about our company that we're looking for lots of 
engineering roles, and we welcome everybody. We are very diverse organization. We have 
people of different races, different background, different ages, different gender, and we welcome 
people from LGBTQ community, from artistic associations. We practice servant leadership, 
collaboration, and we're open to people with their own unique ideas, no matter at what position 
you have at the company. We always welcome people to bring something new. It's fun. We have 
all sorts of fun activities, and it's just very supportive organization and we welcome everybody.

[00:40:10] KP: Well, those are inspiring things to hear. Liliya, to wind up, I want to ask you, in all 
these topics, as we've mentioned, a couple times, things have changed really fast. Technology 
is moving quick. You got to keep your eyes out for new tools and all that. You've done a great 
job of that. Can you give any advice to listeners on how they can keep up with the quickly 
evolving field?

[00:40:33] LF: I would say listen to Software Engineering Daily.

[00:40:39] KP: Thank you.

[00:40:42] LF: And attend different webinars, attend different meetups when we'll go back to 
normal. On LinkedIn, I would recommend people to follow me on LinkedIn and connect to me. If 
you have any questions you can reach out to me. You can just search for Liliya Frye. You'll find 
me there. Also, read the on LinkedIn any other posts people talk about, latest technology, 
different strategy for software development or automation testing. There is a continuous process 
of learning. So, I advise our listeners to be open to new ideas. to new ways of doing things and 
be fearless to try new things.

[00:41:34] KP: Great advice. Well, Liliya, thanks again for coming on Software Engineering 
Daily.

[00:41:39] LF: Thank you.

© 2021 Software Engineering Daily 13



SED 1371 Transcript

[END]

© 2021 Software Engineering Daily 14


