
SED 1336 Transcript

EPISODE 1336

[INTRODUCTION]

[00:00:00] KP: Instabase is a technology platform for building automation solutions. Users 
deploy it onto their own infrastructure and can leverage the tools offered by the platform to build 
complex workflows for handling tasks like income verification, and claims processing.

In this episode, we interview Anant Bhardwaj, founder of Instabase. He describes Insta base as 
an operating system. We explore what he means by that and discuss the types of use cases 
Instabase powers.

[INTERVIEW] 

[00:00:32] KP: But other than that, Anant, welcome to Software Engineering Daily.

[00:00:35] AB: Thank you so much. It's great to be here.

[00:00:37] KP: We brought you on to talk specifically about Instabase, so let's jump right into it. 
What is Instabase?

[00:00:44] AB: So, Instabase helps large enterprises, like large banks or insurance company, 
your health care or government automate their most complex business processes. So just to put 
into perspective, what does it really mean, we work with companies across financial services, 
insurance, healthcare, and so on for the kind of problems like let's say, your Goldman Sachs 
and you want to automate how to do lending. Whenever somebody applies for a loan, you 
should be able to give that loan in less than five second. That requires rethinking of the entire 
architecture. Like how do you get the documents? How do you automatically understand them? 
How do you automatically apply all the business logic? And then being able to do all that into a 
solution that can help with this entire business process, Instabase provides a platform to do all 
of that.

© 2021 Software Engineering Daily 1



SED 1336 Transcript

[00:01:38] KP: Very cool. Well, I can imagine a lot of complications in that process of getting the 
five-minute loan approval done. They have to probably upload some documents that who knows 
what those look like, right? There are so many different pay stubs in this kind of thing. Maybe 
there needs to be OCR and problems like that. Do you consider yourself an AI platform in that 
regard?

[00:01:58] AB: So, AI is one important aspect of it, because how do you really understand 
document? You have to apply AI. How do you really classify certain things? You have to apply 
AI. But there are a bunch of other pieces that are beyond AI, which is like, how do you make an 
API call to some credit system that will give you credit score, right? How do you really integrate 
with some already fraud information that you might have about that particular account or that 
particular individual. So, the amount of AI that are used in some aspects, which is document 
understanding, extracts, and so on, but then what we call this like Flow Builder, which is a low 
code platform for building all the business logic in addition to the AI, because the good part of 
the systems are also a ton of business logic. If you know, any complex business process, there 
is so much of those.

[00:02:52] KP: Absolutely. Is Flow Builder, the main tool that an operator of Instabase would 
find themselves in most of the time?

[00:02:59] AB: For automating their business workflows. Flow is one of the main tools, yes.

[00:03:02] KP: And then the typical implementation or deployment, how complex does Flow 
become?

[00:03:08] AB: So, flow is basically a graph, where you have steps that can branch out and you 
have more steps that you can build as complex as you want. So, it's basically unbounded graph. 
You have set up steps, and those steps can connect to each other in any way. So, it could be 
very simple, like, do the set of five things, or it could be very complex, like, go do this based on 
this decision, then do this, then go and apply AI here, then based on the AI result, do some 
other things then do 20 other things. So, it depicts and represents the complexity of the 
business process. And Flow is a tool that allows you to represent all that complexity pretty 
easily.

© 2021 Software Engineering Daily 2



SED 1336 Transcript

[00:03:49] KP: If I didn't know about Instabase, and I was tackling a problem like this, I'd 
probably go hire some software engineers who know about API integrations and maybe PDF 
processing tools and things like that. In this situation, would I ask that same developer to use 
Instabase? Or do you find a different type of professional is better to operate a tool like yours?

[00:04:08] AB: Yeah, this is a really, really good question. So, if Instabase didn’t exist, I'm sure 
you can build number of different pieces using developer but there is a lot of work that is needed 
to really solve some of the problems in this complex business processes. That's why you see a 
bunch of these business processes are very manual. The reason why when you apply for a VDI, 
it takes a long time. The reason why when you apply for home loan, it takes a long time. 
Because a bunch of these things have to be reviewed by humans, because machine or AI has 
not reached to the point where they could make these decisions automatically.

Over the last two or three years or so, there is a significant advancement in artificial intelligence 
and deep learning that allows the human level precision for these kinds of problems. So that's 
one aspect. So many times, that would be developers at our customers who will go and build 
that business workflow using the toolkits and building blocks we provide. But in many cases, the 
ops people because they understand the business problem much better than developer. Since 
we already have a very visual tool to be able to build that workflow, so many simple workflows 
can be built by non-technical ops people themselves. But if you go in very complex workflows, 
then developers can go in because if you want to integrate with API, some developers will have 
to write that integration code.

[00:05:26] KP: If we were implementing these sorts of things in software, I assume we'd pick up 
the typical tools like version control and pull requests for software deployment. What does that 
experience of change management look like in Instabase?

[00:05:39] AB: Yeah, that's a great question. Because in Instabase, you can write code, you 
can write flows. So, we have version control built in the platform itself that integrates with your 
GitHub, and Bitbucket and GitLab and so on. Because different customers have different kind of 
version control system. So, what we do is we basically integrate with the existing version control 
software, so that they can start versioning the artifacts that are created by Instabase.

© 2021 Software Engineering Daily 3



SED 1336 Transcript

[00:06:02] KP: I'm wondering if we could do a zoom in on the flow system and talk a little bit 
about the options available there. If users haven't been there to check it out themselves, yet, I 
think they could picture this being an audio podcast, maybe it's a little challenging, but picture 
kind of a palette of different tools like we'd mentioned extracting stuff from PDFs. You probably 
have a library of those and the graph you can connect things with, how big is that palette? 
What's the universe of options look like to a new user?

[00:06:29] AB: Yeah, so you have to basically think at the raw level and the meta level. So, at 
the raw level, you might have infinite options, because you can do whatever you want. But the 
meta level, there are not many things. If you see, there have been software that had been 
created that encode these complex workflow systems with some simple primitives. One of those 
primitives, like the first operation is you do certain operation that can be repeated by a code. But 
then when you are working on batch of data, you have some kind of map operation, then you 
have some kind of reduce operation, then you have some kind of combined operation, then you 
have some kind of filter operation.

Now, within filter, you might use a different classification model, depending upon your business 
problem. Within mapper, you might use read file as your map, for every single file, read that and 
convert this into text, that's one map operation. After reading the file, then you might want to 
split pages. That could be another map operation. Then you can apply the filter operation that 
does your classification using some model. Then on the classified file, you can use another map 
operation that really basically uses some extraction model to extract the fields, and so on.

So, there are some set of like simple primitives, like about 15 or so. And then those can be 
mapped into your actual business operations. Even though there could be infinite steps, they 
eventually get reduced into these 14, 15 common primitives that you use for building the 
workflows. Pretty similar to like, if you used a Spark, right? Like Spark basically gives you some 
primitives to build these complex data pipelines, and all your like MapReduce combined filter 
and all that. But now, what goes inside map is the interesting part. Is map like OCR process? Is 
map like splitting into pages? Is map like making an API call somewhere? Is map like writing 
custom user defined functions? All the other things that are flexible.

© 2021 Software Engineering Daily 4



SED 1336 Transcript

[00:08:13] KP: Gotcha. I've seen a lot of implementations of OCR, and I found it works great, 
modern tools, even off the shelf stuff work great if you have a narrow range of documents you 
work with. Someone says, “We want to process these tax lien documents, and they're all 
basically the same thing.” You can get that going. But Instabase has a much harder challenge 
than that. Anyone can show up with any crazy PDF that has a terrible layout and this kind of 
stuff. Are there challenges you face around extracting data from the universe of all possible 
layouts?

[00:08:47] AB: Yeah. So, this problem was very, very, very hard, as you already know. It was 
impossible to solve this problem until like three years ago. But the advancement in the AI, so I 
don't know how much you're aware of the models that Google basically produced called Bert, 
and then open AI did, GPT, one, two, and three. And what they really did is they took the entire 
worldwide data, and you could mask a particular set of words, and see that if deep learning can 
produce the same set of words. Because if it could do that over the World Wide Web, then you 
can reasonably claim that if accuracy is high enough that it really has ability to understand 
language.

Now, if that is true, document is superset of language, right? You have all the language problem, 
and then you have all the layout because just some random number at the top would be invoice 
number or purchase order number depending upon the document. So, what you really do is, 
can you take all the documents in the world on a two-dimensional plane, and rather than 
thinking those as a sequence of words, can you just think of those as something represented on 
a 2d geometry? Because at the end, what is a paper? Paper is a 2d geometry where you have 
these words, occupying some space in the geometry. Now, can you build a deep learning model 
that can take all the documents in the world and you can mask any area on the two-dimensional 
plane and see that if machine could reproduce that. 

We got a really good breakthrough sometime last year, where it was able to do that with a very, 
very high accuracy, like 80% to 85% accuracy. That's pretty incredible, if you can do that, which 
basically means that deep learning was able to understand different layouts and the concept of 
documents, like what is list? What is your paragraph? What is your table of contents? What is 
selection box and all of those? And then what you do is given that you have that base model, 
now you can train that for the specific domains. For example, you can now take 100, like pay 

© 2021 Software Engineering Daily 5



SED 1336 Transcript

stubs and train a model, it basically learned that concept very quickly and it basically gives you 
very high accuracy in extracting from pay stubs. Same thing you can do for any kind of 
documents.

So, the reason why this was possible was because of the advancement in the deep learning 
that happened over the last six, seven years or so. But the key breakthrough was the attention 
model that Google wrote the paper about, which fundamentally change the natural language 
that you saw, Bitboard, GPT-2, and GPT-3. We're applying something similar, mainly focused on 
documents.

[00:11:06] KP: Those tools have all been created after the founding of your company, can you 
talk a little bit about how you stay relevant with research and bringing in such fresh new ideas 
into presumably your production system quickly?

[00:11:18] AB: Yeah, so this is such an interesting question that Instabase was designed as an 
operating system. The architecture of Instabase is – and it came from some of my work at MIT. 
So, MIT, we were doing a project called datahub. And what datahub was looking at was, if you 
go back in history, you will see that everybody used to build their own data center. But then AWS 
and GCP, and, Azure came along and said, “You don't need to build your own data center.” 
Basically, you can use some primitives like compute and storage and caching and databases, 
and you can just get up and running your data center. Every data center needs similar things.

The question that at MIT, we were trying to ask was, can you build a layer on top, which is a 
Windows like operating system that the way like Windows building an operating system where 
you could build all the SDN primitives that anybody could build application on Windows and that 
could just run anywhere? What is the layer above the cloud? Should there be an operating 
system, which has really cool building blocks, and that anybody could build applications on? 
Now, what applications we would build, we didn't know at that time, right? So, I basically 
dropped out and spent first two years building the OS. Once we build the OS, you want to build 
some cool primitives and building blocks. One of the key building blocks that we built was 
document understanding, because that is such a common problem across every single industry.

© 2021 Software Engineering Daily 6



SED 1336 Transcript

Our early version of document understanding was powered by a technique that we had done a 
lot of research on, called program synthesis. But at the same time, we basically saw that as the 
variability increases, that particular technique struggles, because the point is, it is very, very 
hard to really come up with a logic that could understand any layout. We have a focus team that 
really looks at what is happening in this research area and we, ourselves, do a ton of research 
in this space. When there are tons of models that came from Google, and then we saw that how 
the effect of that had been on natural language, the fundamental question is, why it would not 
work on documents. Now, can you go and train a big neural net on documents, and you start 
seeing the results and that's how we brought that in.

The reason why we were able to do that was because we've designed everything in an 
operating system and an operating system, you can keep adding more building blocks, right? If 
you look at Windows, the reason why Windows has stayed relevant for last, like how many 
years now, they started in, like 1980, or something. So, the actual Windows operating system, 
it's like 40 plus years is because Windows did not solve any problem, it just give you a primitives 
so that you can build applications. And those primitives can keep changing. Those applications 
can keep changing. So, we don't do much get affected by getting obsolete and that is because 
maybe one component of our OS can get obsolete, as long as we have the ability to bring the 
latest innovation immediately faster than anybody else. You can still be number one all the time.

[00:13:56] KP: I see a strong path to adoption for Instabase in companies that aren't 
necessarily technology companies, things like claims processing and mortgage processing in 
particular. Not that I know those industries, but they strike me as places where lots of 
companies could be successful, with surprisingly basic office policies and systems in place. Is 
that your typical path? Or do you see adoption across a wide set of different enterprise 
situations?

[00:14:22] AB: It's a very wide set. So, basically, our strategy was this. So, when we started a 
company, we wanted to win an operating system. If you want to win an operating system, and 
you know, you have to win the application ecosystem. Now, in order to win the application 
ecosystem, you need a lot of developers building apps for your platform. There is no reason 
why a developer would want to build an application for your platform unless you have market 
distribution. It just doesn't work. 

© 2021 Software Engineering Daily 7



SED 1336 Transcript

So, it's kind of like a chicken and egg problem because the market has to declare you have 
victor before even if you start with the step one. We would like, if we want to win in an operating 
system, we have to first win the market penetration. Now, how do you win the market 
penetration? Nobody wants to buy an operating system. People buy things that solve their 
critical problems, critical use cases. So, we were like, now let's go to the key industries and find 
what are the most important use cases and most important problems that they have so that we 
can bootstrap the operating system by solving the use cases and pushing the OS as part of the 
platform and then keep pushing more and more things.

We basically started with banking. Our strategy was to go after top players first, right? Because 
for example, like in banking, the customer that you want to sell to is Goldman Sachs, JP Morgan 
Chase, Bank of America, Citi, and those people, right? Because once you do that, you cover 
80% of the all of the volume, but also, they are the most complex. If you make it work for them, 
it will work for everybody else. So, what we did was we basically took a strategy exactly 
opposite of most other people that rather than trying to go after the smaller players, and 
startups, we will go after the biggest and most complex companies in the beginning across 
every single industry. So, we did in banking, we did in insurance, we did in healthcare, and now 
we are basically trying to do that in government. Our customers are some of these big names 
that you already know, Goldman Sachs, Bank of America, JP Morgan Chase, MetLife, and so 
on.

[00:16:08] KP: Could we talk a little bit about the onboarding process? What does it takes to get 
going with a tool like yours?

[00:16:14] AB: So, there are two steps. One is the installation and deployment. The second one 
is building the applications. So, most of our customers are large, which I already talked about. 
That basically means there is a ton of regulations. This data cannot go that displays, the HPII 
and all that stuff. And that's where our biggest advantage is, since all the applications for 
Instabase are built on Instabase operating system, as long as you can support running the 
operating system anywhere, your applications are fully portable. When you build an Android 
app, you didn't matter which phone you built it for it will work on any phone as long as they have 
Android operating system.

© 2021 Software Engineering Daily 8



SED 1336 Transcript

We basically said, “Yeah, I mean, you can install it on-prem, you can install it inside your own 
virtual private cloud. It doesn't matter. It's AWS, or GCP, or Azure, or you can run on 
Instabase.com.” So, most of these complex customers typically choose to install within their on-
prem or inside their own cloud VPC. That sometimes, cloud VPC is easier because you know 
the environment. When it is completely on-prem, sometimes it gets tricky, right? Because what 
is the network policy and what is the storage engine? You have to do all the integrations. We 
have seen entire infrastructure up and running in production, sometimes as quickly as a week, 
and sometimes as long as like three months. The reason why sometimes it takes three months 
is you go and deploy the customers in and then you figure out that there is some security policy 
that did not allow network calls, or there is some policy that did not allow connecting database in 
a way that we do, or you have to use certain protocol that is very internal to them.

So, we had to deal with all those. But now given that we have worked with so many customers, 
now it is pretty seamless, so anybody can go and really deploy anywhere where they want and 
advantage that customers get is application that they build is future proof. You build on-prem, 
but when you move to the cloud, same applications will work. When you move from AWS to 
Azure, or GCP, things will continue to work. So, any application that is built on Instabase is fully 
portable, fully future proof, it doesn’t matter where you run.

[00:18:14] KP: I imagine that portability is in part, powered by the strength of containerization is 
sort of a tool to do it. Are there any extra challenges that make it especially difficult to deploy 
into all the major clouds and even on-prem environments?

[00:18:28] AB: So yeah, it is powered primarily by containerization. But you have to know this, 
which is containerization gives you the ability to run, compute in a stateless way. But you still 
have to store the state somewhere, some database, some caching and so on. So, we had to 
define like, how do you build a general-purpose file system? If you get Windows, the reason 
why Windows is portable, or you can install on any hardware is because somebody wrote 
NTFS. And all the hardware provider will basically implement a device driver that basically 
converts the NTFS calls into that lock storage calls on that device, right? So, we had to basically 
build a bunch of these very, very basic primitive, like how file systems are written. We have our 

© 2021 Software Engineering Daily 9



SED 1336 Transcript

own file system called IBFs, which could be mounted to S3 or NFS, or Azure or local file system 
or whatever.

So, when the application is called Instabase file system, under the hood, it will make the IO calls 
which are relevant to the underlying device or storage device that actually stores the data. The 
same thing we had to do for databases. Same thing we had to do for all of the applications, like 
how the applications communicate with each other. So, containerization is one aspect that 
allows you to run services in a portable way. But they don't guarantee that every application that 
you write will be completely portable on top of it, because you have to come up with these 
primitives that allows these independences.

[00:19:48] KP: Makes sense. Can you talk a little bit about the process of fostering that 
marketplace of applications? I'm curious about how you get maybe external developers to 
contribute ones or guide your own internal development for what your users need.

[00:20:02] AB: Yeah. So basically, we break this into three different stages. The first one is the 
first party developer, which is application developed by us. Second one is second party 
developer, which is application developed by our customers. And the third one is a third party, 
which is application developed by somebody other than we and our customers. So, the first part 
is pretty simple. We build applications. We know everything internal, we can build applications. 
So, I'll not spend a lot of time on that. So that's pretty cool. That works.

The second party is the application that are built by our customers. And because at the end, like 
one of the things that we realized, in the first party case, why first party is important is, even 
though it looks like the document understanding is such a broad market, there is a lesson that 
we learned, and I'll tell you the lesson. It looks very obvious, but it is hard to realize that until you 
really sort of see it. We realized that every bank in the US needs to solve same kind of 
problems. They process similar kind of documents. So like JPMC, they do not process any 
different kinds of documents than Bank of America, than Goldman Sachs. The reason why, is 
when you apply for the loan, you will submit same documents to Wells Fargo as you when you 
submit to JPMC. So, the point is, the problems are pretty much same. Same thing for insurance, 
right? Same thing for healthcare.

© 2021 Software Engineering Daily 10



SED 1336 Transcript

Basically, geography and industry are the most important things like all banks in the US need to 
do same things. All insurance company in Europe need to do the same things. So, you go after 
every geography and industry and build useful apps for them. So that's the first party. That's 
pretty simple. 

The second party is slightly complicated. And the reason why they complicated is, like some of 
our customers are global, right? Like a Standard Chartered for example. They wanted to build 
an app for client due diligence in Kenya and Uganda and Karna. I mean, we don't know how 
things work there. They know that much better than us. If we try to go and understand every 
single market in the world, it will not work. So, giving the right toolkits as part of the operating 
system so that they can do it themselves becomes very, very important. That’s the second party. 
Our customers building applications for their own internal marketplace.

The third one is why would somebody else want to build applications? So, we went to Google 
first and say, like, “Hey, Google, you want to build apps for us?” And Google were like, “I mean, 
why? I mean, we want everyone to come to Google Cloud. You are telling us to build apps for 
you guys. Why?” Then we went to Microsoft and say, “Hey, Microsoft, you guys are building a lot 
of cool services, do you want to build and make those things available on Instabase?” And 
Microsoft was like, “Who are your customers?” And then we said at that time Bank of America 
and JPMorgan Chase and Goldman Sachs and RBC and First Republic and MetLife, and so on. 
They were like, this is interesting. And I said, like, what if like, we gave you our services, let's 
say OCR, or handwriting detection or language translation, can you make it in production in all 
these customers? They’re like, “Sure.” And the reason why Microsoft cared about this was 
because Goldman Sachs went to AWS. Capital One went to AWS. Somebody else is on GCP.

So currently, Microsoft can only capture those customers who are on Azure, right? They cannot 
capture those customers who are on AWS and GCP. Now, as soon as they have built 
applications on Instabase, that application is available to everybody. It doesn't matter whether 
somebody is in AWS or GCP, or somewhere else, or even on-prem. So as soon as they build 
the application, we saw that, basically everyone started using it, because, you know, it was 
good. It was a good application, and everyone needed it. Today, I think we drive more volume 
than any other vendor or partner that they have in terms of the OCR and the handwriting and 
the natural language translation and those kind of things to Microsoft and this is great for them. 

© 2021 Software Engineering Daily 11



SED 1336 Transcript

Because even if somebody went to AWS or GCP, Microsoft can still make money from their 
cloud services, because those services run natively on Instabase, and can run it in the 
environment of AWS. Because nobody wants to make an API call from GCP, to Microsoft, 
because you have the security policy and all that.

So, this is basically our third party. So currently, the third party is very limited to selected set of 
companies. Because when we go to Goldman Sachs and say like, “Hey, this app is built by 
Microsoft”, they're more willing to use it, than if we say this app is built by some random startup. 
At some point, we'll open it for everyone, but currently the third party is very restricted to our 
selected partners.

[00:24:12] KP: Gotcha. That makes sense. When you have a new, maybe even a new industry, 
take a look at the platform. Is there any phase where you have to go through and kind of sort 
out unique use cases and introduce new functionality? Or what's, I guess, the maturity of the 
offering been like over the years?

[00:24:27] AB: I mean, there is always some work you have to do. But those are more market 
research than technology research. So, market research is what are the use cases? What are 
the value and those kinds of things? The point is, it depends what those problems are is like, 
can you run set of steps and can you understand documents at the very core level? Or data in 
general, can you understand unstructured data better than anybody else? Because most of the 
problems they have to deal with unstructured data. In healthcare, it's just that your input is going 
to be a bunch of medical records, and doctor's notes and those kinds of things rather than pay 
stubs and bank statements and something else.

In general, we do not have to make product changes when we go to new industry, but they 
always have market research on how the sales team will go and purchasing things and how we 
will talk about things and so on.

[00:25:16] KP: When a technology group is about to start a Greenfield project, and they're 
looking at options, and Instabase crosses the table of things to consider, obviously, there's a lot 
of things to think about along those lines. There'll be some young engineer that says, “No, let's 
just build it ourselves.” There'll be someone who says, go out and get other comps and other 

© 2021 Software Engineering Daily 12



SED 1336 Transcript

RFPs and things like that. What is the typical story like for someone who learns about the 
product, and then their path towards adoption?

[00:25:43] AB: In general, I think some of the problems are very, very hard. So, even those 
people want to build it themselves. They love Instabase, because in Instabase, they can build 
that in two weeks, rather than three years. So, it's this question of like, “Is there any sense of 
building AWS yourself?” It doesn’t make any sense, right? You can go and do the cool stuff on 
top of it, because it gives you all the primitives. So, I think our goal is to enable all of those 
developers to go and do things quickly and get a lot more value from their work than trying to 
build some of those things, which take long time and are so complicated.

[00:26:18] KP: What's the developer experience? If I sit down, and let's just assume I've got 
something a little bit custom, where I'm going to want to write some of my own code, how do I 
get to hello world?

[00:26:27] AB: That's pretty simple. We have an ID where you basically open abc.py, put that 
inside script directory and simply say, “Register hello world, colon, hello world” and write your 
own implementation of hello world in Python. You can use whatever language you like. But 
Python is the most popular language that customers use. So, that's for the backend code. And 
for front end code, we basically have – because many times you want to do customization on 
the front-end side. So, we have something called custom UI as your widget and you can write 
any React component there. So, you can basically literally change anything by writing code in 
React.

[00:26:59] KP: Very cool. The idea of Instabase as an operating system is interesting to me. 
Operating system is not a framework and I think it's Instabase is not a framework, it's something 
a little different than that. But it's also a space, I'm not totally – I don't have my sea legs for I 
guess is one way to put it. Are there other things that you have inspiration from? Or is this a 
comparable space? Seems like Instabase is somewhat unique in that regard.

[00:27:24] AB: Yeah, there is nobody who is building an operating system. But fundamentally, 
what we believe is that if you look at Windows or Mac, which has been the primary desktop 
operating system, before even I go there. So, if you look at how people consume computing, 

© 2021 Software Engineering Daily 13



SED 1336 Transcript

and I think people consume computing in three different ways. The first one I call lifestyle 
computing, and lifestyle computing is the computer that you need as part of your lifestyle. For 
example, maps and camera and search and those kinds of things. And the right operating 
system and the right computer for that is your phone and iOS and Android, the right operating 
system.

Now the second one, we call the productivity applications that people can give like Word and 
Excel, and PowerPoint, and desktop has played an important role in sort of distribution of the 
applications like Windows and Mac, the two primary ones. So that's individual productivity 
applications. But more and more of those things are moving away from desktop, right? They're 
moving towards something on the web site. You go to like slack.com, or you go to Facebook, or 
instabase.workplace.com, or Google Suite, more and more things are being offered as a 
browser-based application. So, they don't build native iOS applications anymore.

The third one is operational productivity applications. The applications that allow you to run 
operational productivity, like how do you run banking? How do you run government? How do 
you run healthcare? And there's no operating system for that. The question that we 
fundamentally started asking is like, if you can go in buy an app or getting food delivered to your 
home on your iPhone, and there are like dozens of apps. Why can't Goldman Sachs go and find 
an app how to run their risk analysis? It doesn't exist, right? Everything is very custom built, and 
they have to go and engage with vendors, and so on. And what that OS would look like?

There are two steps that we saw. One was more and more applications, but moving towards 
cloud. So that's number one. And the second one is the desktop application was moving 
towards web. Web became the main method of delivery for the applications. There are very few 
applications that run as a native app on Windows or Mac. Even Slack is basically a WebKit. So, 
under the hood, it makes a web call. It's basically all of that stuff is contained inside the web 
layer. If more and more applications are going to be distributed, which is they're not going to be 
run on single machines. They're going to be running on multiple machines, what that OS would 
look like? What the distributed operating system would look like? And then we looked at if you 
have to build distributed application, what is the layer? What is the stack? And the stack is you 
have some data center, and you have all the cloud services and then you build on top of that. 
We were like, “What if we built an end user operating system that were distributed? What if we 

© 2021 Software Engineering Daily 14



SED 1336 Transcript

build an application for Windows, but that could run on tens of thousands machines?” Can 
automatically scale to whatever things that you needed. And if that would be true, then people 
can really build the application that can be distributed for real problems that Goldman Sachs or 
Bank of America or MetLife, or whoever.

So, that was the key hypothesis behind building the operating system. Because once you think 
of what is the layer above data center, what is the layer above AWS, or GCP, or Azure? And that 
business logic layer is something that has to be solved by an operating system.

[00:30:27] KP: Absolutely. One of the things an operating system does is offer services, not just 
services that the applications can use, but ways they can work together in some sense. I could 
differ operations. You don't get that in the sort of standalone collection of web apps that we have 
today. 

[00:30:44] AB: Exactly.

[00:30:45] KP: What are some of the ways that that manifests in Instabase?

[00:30:48] KP: Yeah, you got a really, really good understanding of what we are trying to 
basically do. Because the problem is their application, is they can't talk to each other, right? 
abc.com and xyz.com cannot talk to each other. The reason why iOS is very useful it not 
because you have camera and GPS, is because you have camera and GPS as a primitive and 
as a building block, so that you can build your own Uber. You can build your own Instagram. And 
how you can do that the distributed operating system where these things become building 
blocks, like deep learning can become a building block, where any applications can go and use 
that, where basically, each of these applications can communicate to each other through some 
protocol. Where any application can really use the services provided by other application and 
they can see what that application is doing. As long as somebody gives you permission. But 
there is common storage system, right? As long as you know, you have given privileges and 
permissions.

So, that was the whole region, which is there are so many applications that are being built, but 
they all are being built in silos where no other application, and there is no way for using the 

© 2021 Software Engineering Daily 15



SED 1336 Transcript

application as a building block so that you can create the third one. Because one of the quotes 
that I really liked from I think Steve Jobs, which is, “A platform is not where the whole is equal to 
some other part, where you can get the value equal to each individual thing. Here, the whole 
would be like 10,000 times bigger than some of the parts and that's what the good platform is.” 
You should not see iOS is collection of camera and GPS and map. That's not what makes iOS 
unique. What makes iOS unique is those things are primitives that allow the applications to be 
built, where each application can talk to each other and can communicate with each other. And 
that's exactly why we went after this OS vision.

[00:32:25] KP: Every industry needs to take security and compliance and privacy very 
seriously. This is especially true in some of the industries you service like banking, and 
insurance and things like that. What's the story for those topics as it relates to Instabase?

[00:32:40] AB: Yeah, so we have taken more of like Apple's approach towards that, which is, 
you control the device, right? So, we don't ask customers to send the data to us. We basically 
say go and install inside your own premises, inside your own firewall, which could be your cloud, 
which could be your on-prem and so on. And then we guarantee that all the communications 
and everything is encrypted and we have a very robust permission model, where basically the 
concept of organizations in the workspaces, and you have these individuals that have access to 
the workspaces. And then you have physical separation, where it's not even logically separated. 
Each workspace can mount different storage.

So, for example, I'll give you a very simple example, let's say you're Goldman Sachs, and you 
have offices in India and UK and US, and you created three workspaces, GSN, GS UK and GS 
US. It is not sufficient that basically, you have the permission model that says, “Only people 
within US have access to the US workspace, or people within India have access to India 
workspace and UK, within UK workplace”, that's not sufficient. Because the regulation says that 
if you're collecting data in UK, the data physically need to live in UK. If the data you're collecting 
in US needs to physically live in US. So, the way Instabase does this is you create the logical 
workspaces. But then as part of the file system, you mount the storage as part of the 
workspace. So, you don't have this global storage as part of the OS, what you basically say is, 
now Goldman Sachs India is going to mount the storage unit, which could be NFS, or that S3 

© 2021 Software Engineering Daily 16



SED 1336 Transcript

bucket hosted in India, that it only accessible within that workspace. But then US can basically 
mount separate things and same thing you can do for databases and so on.

So, the way we have approached this is by how do you guarantee that there is not just logical 
isolation and access control? There is ability of physical isolation of data too, because that gives 
complete control for security, and then this all runs inside the firewall of the customer. So, we 
don't get to see the data.

[00:34:32] KP: Aha. Well, if I'm deploying your software into my environment, and it's sort of not 
air gapped, but separated from you, how does billing work?

[00:34:41] AB: It's like, we basically have the sort of system that counts inside that and then we 
have to go and ask the people, can you give us the report? So, we have that kind of trust. We 
don't basically try to ask that. We don't try to move the data from their premises to us. So, we 
literally have to go and quarterly review that.

[00:34:58] KP: Gotcha. Makes sense. What else should developers know about Instabase?

[00:35:03] AB: I think, at some point, and once we open for general purpose developer, like 
today, if you have a cool idea, you can go and build on iOS and Android app store and becomes 
available to everybody. Tomorrow, if you have some cool idea, you can build an app, put that on 
Instabase App Store, and be available to every single large organization in the world, which 
could be Goldman and Bank of America and MetLife and Standard Chartered and Capital One 
and RBS, and RBC and so on. 

So, that's the key thing. What that enterprise app store looks like? We have a consumer app 
store, but we don't have an app store, what do you build the application, and you get free 
distribution, where you can just build massive companies. So eventually, our goal is to enable 
every single individual or every smart people or great minds in the world, to be able to do cool 
stuff, and then be able to distribute with Instabase.

[00:35:53] KP: Similar question, but for like an entrepreneur or a product executive at a 
company, someone who needs to develop a solution, what draws them to Instabase?

© 2021 Software Engineering Daily 17



SED 1336 Transcript

[00:36:04] AB: It's all the cool building blocks available that makes your job so easy. It's the 
same thing at AWS or GCP. Why do you want to build that, is because you don't have to deal 
with the headache of like scaling, and the storage and the data center and the hardware and all 
that. You just go and build your services. So here in Instabase, you just go and build your 
application. That's it. It's automatically we have taken care of distribution, we have taken care of 
running on any kind of infrastructure, we have best building block. If you want to do deep 
learning, I mean, if you tried to build your own document understanding, that it will take many, 
many years. We have put all that effort. So, there are just so many amazingly good primitives, 
like 150 plus primitives available as part of the OS, that you can quickly build a very, very high 
value applications and make money.

[00:36:45] KP: What's the future of the company? Are you just an assembly line of new 
primitives to introduce or is there other functionality that will appear?

[00:36:54] AB: So, we'll continue to build the primitives, which is the OS part. But then we also 
build application. If you were Microsoft, Microsoft not just builds windows, but they also build 
Office, right? Word and Excel and PowerPoint, they are real applications. So, we have about 
like 25, 30 applications too and many of the marketplace applications are built by us. So, we will 
continue to look at the opportunities available in any single industry. And if those opportunities 
are, you know, large enough, we will go and build apps ourselves. Currently, like we already 
have apps in the US markets for all of the common problems like identity and income and any 
kind of documents related to taxes and all that. The same thing for UK, India and so on. But we 
will keep an eye on what opportunity to open up. And if there is a big enough market, we will 
build applications ourselves too, on top of this same operating system that we want other people 
to build on.

[00:37:41] KP: Makes sense. I suspect someone adopting your solution probably already has 
some infrastructure things they're doing in their business, probably lots of different databases 
and tools in play. What's the common story for integrations and pulling things from be it S3 or 
MySQL, what kind of connectors are available?

© 2021 Software Engineering Daily 18



SED 1336 Transcript

[00:38:01] AB: So, S3 and MySQL are more the core OS level primitive. This is the concept of 
mounting. We already have device drivers that converts into base file system into S3, and so 
on. So, you can just mount it. All the standard file system and databases, those are just 
available as part of OS. But if you have something like unique, for example, SAP or Salesforce 
or something that doesn't need to be OS level primitive, we have this concept of user defined 
functions, where you can just add the functions to connect to that system, and then convert the 
data into the format that you want on Instabase.

So, Instabase is a very, very open architecture system. So, anything within Instabase can be 
called from outside using API, and build in Instabase, you can call any system via API. As long 
as you can make a network call and can make the other system communicate, you can 
integrate that with Instabase. Now, if there is no way to communicate with that system, there's 
nothing you can do so and we provide the protocols for that. We have prebuilt connectors for all 
the common stuff that you already talked about, all the databases like Oracle, and MySQL, and 
clouds, and others. And the same thing for file system S3 and Azure Blob Store and Google 
Cloud Data Store and so on, and NFS, and so on.

[00:39:07] KP: Got it. We didn't get into it yet, very much at all. But I should note you have a 
PhD from the famous CSAIL at the laboratory at MIT. Can you talk a little bit about how your 
academic training has influenced your work at Instabase?

[00:39:20] AB: I don't have a PhD because I dropped out. I cannot say that I have a PhD. I was 
a PhD student.

[00:39:26] KP: Sorry, I misread that. Gotcha.

[00:39:29] AB: But yeah, I spent about a little over three years there. MIT is an amazing 
institution. I think I'll give a lot of credit to the time that I spent there and the kind of people that I 
got to work with and the things that I learned from. It's an incredible organization. I think a lot of 
what we are doing are at Instabase is influenced by the work that I did there. Also, before that, I 
went to Stanford, and I think I learned there too, a lot.

© 2021 Software Engineering Daily 19



SED 1336 Transcript

So, if you ask me, everything that we are doing our Instabase, are the things that I learned at 
these two institutions.

[00:40:00] KP: Gotcha. Well, Anant, thank you so much for taking the time to come on Software 
Engineering Daily.

[00:40:05] AB: Thank you so much. This was a lot of fun. And hopefully this was helpful.

[00:40:09] KP: Absolutely. Good conversation. I think we wound well. I want to just touch base 
to an offer, is there anything you think we should have covered that we didn’t get to?

[00:40:17] AB: No. I think you asked all of the good questions and good amount of technical 
depth. I think, as long as the audience are software engineers, this will work great. If the 
audience is non-technical, I don’t know if many answers would make a lot of sense. But my 
exception is that audience is technical.

[00:40:27] KP: Absolutely. I think this is perfect.

[END]

© 2021 Software Engineering Daily 20


