
SED 1303 Transcript

EPISODE 1303

[INTRODUCTION]

[00:00:00] JM: In 2003, Google developed a robust cluster management system called Borg.
This enabled them to manage clusters with tens of thousands of machines, moving them away
from virtual machines and firmly into container management. Then in 2014, they open sourced a
version of Borg called Kubernetes. Now in 2021, CockroachDB is a distributed database
designed with the Kubernetes architecture in mind. CockroachDB uses regular SQL and scales
by automatically distributing data and workload demands. Their databases survive machine,
data center and region failures and provide guaranteed ACID compliant transactions.

In this episode, we talk with Spencer Kimball, CEO at Cockroach Labs, about distributed
databases and containerization. It was a great conversation about distributed systems, and
particularly how to build a modern distributed systems product. I really enjoyed talking to
Spencer, and I think he’s going to be back on the show in the near future. So enjoy today’s
episode, and look forward to one in the future.

[INTERVIEW]

[00:01:02] JM: Spencer, welcome to the show.

[00:01:03] SK: Thank you, Jeffrey. It's a pleasure to be here.

[00:01:05] JM: It's a great pleasure to have you. I've done a bunch of shows on CockroachDB
over the years, and it's an important set of technologies. Basically, the technologies under the
ages of arguably open source Spanner. That's maybe reductive at this point. But more broadly, I
think of Cockroach as falling into the category of modern distributed databases. And in this
category, there's a lot of confusion. You have MongoDB obviously. You have Spanner. You have
Cockroach. You have FaunaDB. You have VoltDB, DynamoDB. If I'm trying to evaluate this
market, what are the features that I'm looking for? Am I looking for pricing? Am I looking for
resilience, fault tolerance? Take me through the swath analysis.

© 2021 Software Engineering Daily 1

SED 1303 Transcript

[00:01:58] SK: Yeah, absolutely. Well, there're many dimensions as you point out, which is part
of why there's so many solutions. The other reason, of course, is that operational databases are
the largest market in software. When we really think about product segmentation, probably the
largest dimension is kind of what's the modality of the operational database. And typically,
people would break that down into NoSQL and SQL. And that's where, in the list of databases
you described, I say there's the biggest dichotomy. And relational databases in the operational
database market are by far the majority. I think it's depends on what analysts you ask. But the
market is something about $65 billion a year and it's growing. The compound annual growth
rates in the double digits, low double digits. Relational is probably 55 million of that 65 million.
And so the other stuff is NoSQL, and it's graph databases, and document databases, like
MongoDB. And there're a number of others. So that's the biggest one.

We're relational. And we've been relational not from the beginning, interestingly, and nor was
Spanner. So I think it is fair to say that we are very inspired by Spanner. And I think, certainly,
when we got started, an open source Spanner would be how we described ourselves. Spanner
also started more as a transactional key value store. And then they realized that in order to
really fulfill one of their primary purposes, which was to replace a thousand plus shard
instantiation of MySQL that was used for AdWords, they needed to have some level of SQL
compatibility. Otherwise, that use case just wouldn't move.

So we also started off as this is the easier problem to solve, is how do you make a distributed
transactional key value store. But we also quickly realized SQL. Despite maybe the last decade,
losing some of its primacy, remains the number one choice for operational database. And part of
that is just, well, it's evolved for a long time. There's tons of institutional muscle memory around
it. But I think more importantly, the evolution that's really happened in the category is about
managing complexity.

So it's easy to start any project on any of the databases you mentioned. But it becomes
increasingly difficult for any project and any database as a project gains lots of additional
functionality and complexity. Relational databases have really found, I think, sane ways to
manage that complexity, explicit data models, ways to alter your table structure, your indexes
and so forth while the database is running. Those are things that are common to the enterprise-
grade relational databases that actually are sort of by design not part of, for example, many

© 2021 Software Engineering Daily 2

SED 1303 Transcript

NoSQL systems where they say, “You don't need a data model. You can just get started and you
can just add things willy-nilly.” And that's great when you get started. It becomes a big
cumulative technical burden as you move along and you get to years two and three, and you
don't have the same engineers on the project anymore, and people don't understand what the
original data model was, because there's always a data model, by the way. So that's the biggest
sort of dimension that separates the field, the very wide field of competitive distributed
databases.

Now, let's say that there's this sort of core capabilities beyond that. Like what is the distributed
database buy you? And there's a lot of differentiation in the marketplace. Even though
sometimes when you look at all the different web pages, they say the same things. There is
there is a significant differentiation. It can be hard to parse at times. Where cockroach is, I think,
fundamentally different from anyone in the market right now, besides maybe Google Spanner,
and it's not Cloud Spanner, it's what Google uses internally, is that we really are focused on a
multi-region set of use cases. So the idea here, and again, is very much informed by the decade
I spent at Google, it's pretty easy to get customers anywhere in the world, right? And for a big
company, that's your fundamental reality, but even for a startup. You get users in Brazil, or you
get users in Japan, or Australia. You want those users to have a first-class experience, not just
something that is only good for users on the East Coast of the United States. That's hard to do,
unless you're actually embracing a data architecture that puts the data close to the customer.
And that's something that Cockroach has been focused on now for the greater part of our
existence as a company. And that would be really one of the big reason you'd select Cockroach,
if you really want to say, “I'd like to build the way big tech builds. I want to make sure that no
matter where the users are, they have an absolutely first-grade experience. There're real time
latencies everywhere.” In order to do that, you do need to embrace a database that has that
differentiating capability. So that's one where we really stand out.

Probably the most common aspect of all the distributed databases you mentioned is high-scale
in terms of data. Remember Mongo in 2010. That was a really big draw. It's like we're web
scale. We give you that capability. We also make it easy, because you don’t have to learn SQL.
And those are really the selling points of Mongo. And they're great selling points. But scale
remains a really big category definer for distributed. And that's really the big reason that anyone
embraces distributed in the first place. Like how big is my data going to get? How big can I let

© 2021 Software Engineering Daily 3

SED 1303 Transcript

my data get without running into problems? And it's different depending on what kind of
database you're talking about.

I'd argue, it's harder in the relational model. There's more disruption there. The disruption
around scale is fundamental to the non-relational, the NoSQL databases. But we’re really – I
think we've innovated in the last six years, as of course have Google and others, in really
bringing high scale to the relational side of the market.

And then there's one other thing I'd mention. I know this is a really long answer, but it is a
complex and competitive space. I think it is important to have a little detail to back it up, but is
the consumption model. And so Cockroach very much started as open source. And we still are.
We have a BSL license now. So it's not strict open source. But that was the dominant
consumption model for databases in the last 20 years. And it really edged out the idea of closed
source. And one of the reasons for that is open source made it extremely small amount of time
required to get to some value. If you think about the sort of minimum time it took to get a closed
source database that you could get your hands on as developer and start to kick the tires, even
get something into production, I would take like 100 days. You’d go through legal, and
procurement. You'd have sales people. And you have to make a decision to evaluate the
competitors before you could ever commit to anything. You got to run a process, right? And so
that could take some serious time.

With open source, you had this ability to, literally within hours, get something stood out, maybe
minutes. And that is a huge advantage for consumption. We're entering a new world now. So the
time to value is greatly enhanced beyond open source if you can consume something as a
service, because you no longer have to learn how to run it and operate it. And so all of the
databases you mentioned fall into different consumption categories. I think you didn't mention
any of the closed source more traditional ones like Oracle, but even those are starting to
embrace multiple consumption models. So really, when you look at Cockroach, not only is it
something that you run yourself, which many of our customers do, but it's also something that
you can have as a fully managed service in the cloud. And that's, I think, pretty common across.
But what you're seeing now is even new consumption models beyond that, which we're also
embracing. So, for example, serverless in the cloud, and serverless applied to a database just
means that you as a user don't have to make all kinds of decisions that are tied to the idea of

© 2021 Software Engineering Daily 4

SED 1303 Transcript

how many nodes do I have? Where do I have the nodes? How big are the nodes? What's my
capacity planning?

But serverless in a database, you get to say as a developer, “This is just a SQL API in the
cloud.” And I can start small and I can elastically grow to however big. I can elastically shrink to
exactly what my needs are. I get charged only for what I'm using. What Cockroach is actually
really moving towards is you don't even have to say what region or availability zone your data
should be in or your database, because it actually spans all the regions. So as a developer, this
is really enticing, because you don't have to make decisions up front that might be challenged
by the reality of where you actually end up with customers, or how big your database needs to
get and how quickly. Instead, it’s a just SQL API that's a seed when you get it, but it can grow
into any size tree in any location where you actually end up with users. And that's, I think, the
future. But you have all of these consumption models. And those also a very important
dimension that does separate the different databases out there. So really, it's what kind of
database, what kind of operational database, and that is very much going to informed by the
application you're writing. And it's really about how you want to consume it. How that's going to
work in your environment. And in all the things you mentioned, DynamoDB, Google Cloud
Spanner, and so forth, those only run in the cloud as managed services. And in fact, they only,
in those different cases, run within a single cloud, whether it's AWS or GCP.

Often, you have to situate yourself based on what kind of company, what kind of use case, and
sort of keep all of those dimensions in mind in order to choose a database that's going to be the
most appropriate. So you can't say that Cockroach is the best for all use cases. It's absolutely
not. So it's a complex competitive landscape out there. And the choice isn't always easy. But if
you know enough about what you want to accomplish, what your end state is going to look like,
it does allow you to make the right choice, I believe, but it takes some education and some time
spent really evaluating not just the surface marketing claims, but a little bit deeper
understanding how the technology works. What happens in very real edge cases in production?
And, yeah, what your ambitions are as a company and as a project?

[00:12:19] JM: Let me see if I'm understanding correctly your perspective on this domain. When
I started this podcast, the CAP theorem was about as much as I knew about distributed
systems. CAP theorem being you can have two or three, consistency, availability and partition

© 2021 Software Engineering Daily 5

SED 1303 Transcript

tolerance at any given time. And there's a lot more detail. It's not that simple in reality. And in
fact, even if you're just talking about something like consistency, are we talking about
consistency between in-memory and disk? Are we talking about consistency between two
different discs? Are we talking about consistency across different data centers? And then you
could add in cost. How are we trading off cost? And the modern CAP style framing is what do
you want? Like what are you willing to pay for? And can you get what you want out of a given
platform without sacrificing too much implementation cost? And I think what I'm hearing from
you is your goal with Cockroach is to provide configurability around those different goals for
what your distributed database should be.

[00:13:33] SK: Yeah. I think that's definitely part of what I'm saying. I'd add a little bit to it and
just say that even within Cockroach, there's lots of nuance in terms of, yeah, we're a CP system.
But depending on what you're looking for beyond that, let's say you want this idea of availability,
there's lots of nuance in terms of what that means. And I think, with all of the databases out
there, there's always going to be tradeoffs. But it's surprising how effective you can find a point
in the solution space that actually optimizes for everything you really care about. And the costs
are things that you don't care about. So there's tons of flexibility.

Cockroach is what I know best. So I can give you a little bit of additional color there to make this
more concrete. The idea of the CAP theorem with availability is actually interesting. And it's
often misunderstood. It's not the same thing as high availability. Really, what it means is that any
non-failing node in the distributed system is able to answer a query definitively no matter what
else is up. So if you just got one node out there, you can ask it and it will give you an answer. It
doesn't have to coordinate with somebody else. That's what availability means.

And what that means in practice is that you can have a split brain, because things can die that
might have the right answer and the things that remain might not have the most recent data, but
the things that remain can give you the answer. And you’re going to get the wrong answer, but it
will always give you an answer if something is non-failing. That’s what available means.

High availability, which is I think what most people think of when they think of that word,
availability in the CAP theorem, high availability is what's your SLA? How many nines do you
have? How likely is this to stay up when there're various kinds of disasters? And there,

© 2021 Software Engineering Daily 6

SED 1303 Transcript

Cockroach can be arbitrarily highly available. If you want five nines, well, it's like what's the risk
of losing a data center? How many data centers do I have to add in order to make sure that I
meet that probability? And that high availability is really something that you can dial as
appropriate for your use case, and Cockroach can do it. So we are a highly available CP
database. Not an available and CP database, which the CAP theorem correctly says you can't
have everything, right?

This is a really great example. Like people worried that, “Okay, well, does that mean that
something that is an AP system is more available than Cockroach?” Yes, in the CAP theorem.
No in terms of high availability. You can make Cockroach arbitrarily highly available. So it's
confusing. CAP theorem I think adds more confusion than it actually helped solve. And that's
just my opinion. But whatever tradeoffs you think are necessary, there's often really interesting
ways to not actually accept the tradeoff and actually get exactly what you want and to sort of
hide the cost.

As another example, Cockroach in the most recent version has added something called non-
blocking transactions. I mean, it's a really fascinating idea, and something that at first glance
just didn't really seem like it would be possible. But in fact, it isn't. So what this capability allows
you to do, think about a use case like Quora, where you want a global audience to be able to
read all the questions and answers. Potentially –

[00:16:51] JM: How'd you know I love Quora?

[00:16:53] SK: Well, everyone does. It's great a system. I use it all the time.

[00:16:58] JM: Did you know – By the way, the first podcast I started was the Quora cast. It was
an unofficial podcast about Quora people.

[00:17:04] SK: I did not know that.

[00:17:05] JM: That’s how much I love Quora.

© 2021 Software Engineering Daily 7

SED 1303 Transcript

[00:17:08] SK: So I lucked out on this example. It's very resonant. Yeah, that's a very common
use case, by the way. It's like there's a certain amount of data that you want local to the
customer about their account, things you might be tracking, and so forth. But a lot of the data,
you want to make sure that it goes out globally. So everyone can read it very quickly from
wherever they're coming from in the world. They're browsing all the questions and answers and
so forth. When you write, which actually in the scheme of the reads and writes in a system like
Quora, writing is actually infrequent compared to reading. But it might be like 5% versus 95%.
Huge imbalance.

So what you realize there is that there's an opportunity to pay a higher cost on writes if your
reads are always super low cost, because you're doing 95% reads, 5% writes. With non-
blocking transactions, what you're able to do with Cockroach is pay a higher latency on your
writes. But when you read, you get not just the global replication like you get in an eventually
consistent system. But we actually make it so that everywhere you read, everywhere around the
world, is going to get the exact same consistent answer even as you're updating things in real
time. Everyone reads the same thing. It's not like, “Okay, Tokyo is reading this. Australia – Or
Sydney is reading another thing at exactly the same time,” because Sydney just hasn't gotten
the data, the update yet that's eventually percolating there. So that's a big problem if you're
trying to build a relational system. So that wasn't an option for us. But we introduced a whole
new transaction model. And what it does is pretty neat. It creates a transaction that's going to
take effect in the future, usually by several 100 milliseconds. And it does the writing and so forth
on a global basis, and it's going to take whatever that delay is, that several 100 milliseconds,
which is a lot for write, but not if you're trying to build something like Quora. It doesn't matter if
an answer takes several 100 milliseconds to propagate around the world. That's almost like an
expectation.

But in the meantime, as that several 100 milliseconds is being used in order to coordinate a
write globally, all of the reads can continue without having any kind of blocking or locking or
anything like that. So all the reads continue to read the old thing. And when the switchover
happens, it happens globally. And it happens at the exact same timestamp. There might be
some absolute time differences, but everyone's going to read the same data after it becomes
committed no matter where you're on the planet. And that's like a really fascinating capability.
And it solves a problem that I think many people didn't think was solvable, and still don't, which

© 2021 Software Engineering Daily 8

SED 1303 Transcript

is like how do you build a system like Quora and actually have consistency globally and fast
reads? And the answer is you can't. That's what people think. In fact, the answer is you can. You
just have to pay a higher cost on the writes, but you need a clever system to do it. And that was
mind blowing to me, because I thought the answer was no too. But we've got engineers,
thankfully, that are smarter than I am, that figured out how to do this. And it's almost magical.
But there are things like that everywhere in computer science. And I think the opportunity is
really to get clever there and sort of redefine how things can be built so you can build things
better.

[00:20:04] JM: To my knowledge, Quora, and I realized this is taking your point further than you
intended. But to my knowledge, Quora started on MySQL. And a lot of companies will start on
some fairly common well-understood solution, MySQL, MongoDB comes to mind, DynamoDB,
maybe Postgres are probably like the most common places to start. Are you seeing people start
with CockroachDB or migrating to it? What's the story there?

[00:20:43] SK: Absolutely. And that's why we are Postgres compatible. So we wanted to make
sure that starting on Cockroach wasn't learning something new. Because it’s just, I think, need
this friction and how many different SQL dialects or database API's do you need out there. I
think we don't need new ones. SQL is a fairly well-understood standard. We chose Postgres
instead of MySQL. We could have done MySQL. They’re both great. We could have done
something to look like Oracle that we probably have gotten sued by them. I think that part is
really important to getting developers to start on Cockroach. Of course, we do have developers
that start on Cockroach, and we have since the open source project was in beta. So that
happens. The question is how do you get more developers to start on Cockroach?

And there’s actually a pretty interesting story. When developers look at something like
Cockroach, traditionally, I think there's a realization if they've heard of it. And Cockroach is neat.
It does cool things. I might not need that for this use case. It's like Postgres. It's compatible with
Postgres. So maybe I start on Postgres. And if it succeeds, I'll move to Cockroach in the future.
It's very hard to move databases though. So we want a developer that thinks that way and that's
interested in Cockroach’s capabilities, because they think it's going to be a good fit for their long
term ambitions. We want them to start on Cockroach. So I think that's one of the central
problems to solve for any company that's a new database in this competitive, crowded space.

© 2021 Software Engineering Daily 9

SED 1303 Transcript

What we're really trying to do to solve that is to realize what makes a developer excited about a
new database beyond the nice differentiating capabilities that Cockroach has? And I think the
answer to that is can you make a developer's life easier? Because if you can do that, then you
can get a developer's attention, really get their intention. It's going to be easier to use
Cockroach than it is to use Postgres. That is a good reason to start on it. Because if that's true,
and you get these outsize differentiators that truly explain the cloud and the distributed
architecture, then it's a slam dunk, right? You get you get both things at once. So we've been
trying to puzzle that out. How do we make a developer's life easier? And I think, there, really, the
realization is that relational databases are pretty high-friction. So if you're going to get an RDS
instance, which is probably the cheapest thing you can get. A production ready RDS and AWS
cost about $100 a month. So you realize there's actually significant friction to acquiring a
relational database as a service. And if we can reduce that friction, then we can make
Cockroach actually an easier place to start, even though it's a kind of newer, more complex,
more powerful kind of database. It looks like Postgres. So that's a good start. But can we make
it so that the friction is low? And we're saying, “You know what? The right way to do that is to
make it so that, for developers, relational databases don't cost money anymore. They're literally
free. And free forever. And they should always be free.” Kind of like the way Gmail feels, right?
Obviously, Google has been happily monetizing Gmail. Meanwhile, it's still free for everyone.
How did they do that? Well, you realize that you can charge in the sort of corporate context for
every Gmail user. You can start to charge a user when their mail spool gets too big. But I think
it's mostly the sort of corporate side that they monetize.

For us, we want to make it so that you can log in with GitHub. You don't have to create an
account or anything like that. And you can get a Cockroach cluster. You can get 10 of them. And
you will have a perpetually free, very generous tier. So in terms of like how many requests a day
you can use it? We want to make it so that you can run, essentially, any use case on Cockroach
for free as a developer. Never get charged. Never put a credit card down. Until you actually
reach like a product market fit level. So think about if you're a developer that's starting a
company. And I don't know if you've done it yourself. But a new project, you typically have pre-
production stuff. You're doing Dev tests. You might have some big regression tests that are
running. You might use it for CI/CD. You're sort of spinning up databases quite a bit. You might
have multiple production databases. It's quite a few things. We want to make all of that free.

© 2021 Software Engineering Daily 10

SED 1303 Transcript

Most of the early starts have to do some serious iteration before they really hit resonance with
their target audience and get product market fit. We want to get all the way up to the point
where you start to release scale exponentially. And then you would exhaust the free tier and
start to pay with a credit card. And eventually, if you become, say, the next Airbnb, we would
expect you to move from that sort of consumption-based model to really having a dedicated
Cockroach cluster that is within your security footprint with VPC peering and that sort of thing.
So there's sort of this journey we want a developer to take if they're a new start, which is a free
entry point, which is very generous. Eventually, you put your credit card down and pay for what
you use. And then when you really graduate to the big leagues, you're going to have a
dedicated Cockroach cluster.

And the way we make all this work is pretty fascinating. It's really introducing multi-tenancy to
Cockroach so that we can accommodate really fine-grained usage and make it so that we're not
dedicating VMs to something where someone's really just kicking the tires. So we can efficiently
share resources and use them where they're actually in-demand at any given point, say, in a
current day. And that really lowers the cost for us. And so we can offer these databases for free.
And then, fundamentally, all of that's paid for by our big customers that land in the dedicated
space, and they want that real enterprise experience an additional level of scale and so forth.
So that's sort of the journey we're on. But that's where, fundamentally, I think you're solving the
problem of how do you get a developer to be interested enough in Cockroach that that's where
they're going to start, as opposed to where they might think that they're going to go eventually if
they're otherwise going to use Postgres?

[00:26:33] JM: Very interesting vision, the whole ease of use platform onboarding thing. So the
database as a service experience is clear to me. It's understandable why that is desirable to me.
Can you take me inside building for that kind of product vision? Because to me, that's a vision
with some real economic implications. So are you operating your own data centers?

[00:27:06] SK: We're not. So right now we use AWS and GCP for our fully-managed service,
and also our network, our serverless, which is currently in beta and will soon move to GA. Right
now, the economics are much better to use the public cloud providers. But there is a level of
scale where that ceases to be true. But it's a level of scale that is somewhere foreign to our

© 2021 Software Engineering Daily 11

SED 1303 Transcript

future, because the clouds are very competitive, and will give you extraordinarily steep
discounts as you scale up within them. Further, the database is just part of any application
stack. So if we had our own data centers, then those would have to have very fast interconnects
with where our customers actually want to run their application layers. Where there’s just going
to be data egress costs and things like that, the sort of inter-cloud network bandwidth actually is
much more expensive. And it's going to create more latency as well.

So the realization is even if we made some economic sense for us to run our own data centers
for Cockroach, it would still be somewhat at odds with how customers want to use Cockroach.
So they already have a cloud footprint. They want to make sure that whatever cloud they're in,
they can use Cockroach as a service in the same cloud even in the same availability zones so
that they sort of minimize the latency and the cost.

[00:28:26] JM: I've done a few shows recently on cross-datacenter replication and cross-
datacenter fault tolerance. Can you tell me, what does Cockroach do to enable that? And what
is the networking look like between data centers to ensure that level of fault tolerance?

[00:28:49] SK: Yeah. Yeah, geo replication is the concept, what we call our business continuity
resilience capability. And yeah, you very much – The expectation is that with Cockroach, and
suddenly, if you run it, if you use Cockroach cloud, the fully managed services is always true.
But if you run it yourself, this is typically what people do. You're going to use probably availability
zones within a region to do your replication. And if you think about what that means, it means
that you can lose an entire data center. And you're going to have other copies of the data in the
other data centers you're using.

We use what's called consensus-based replication, which is, I think, in advance in many ways
from the asynchronous sort of primary, secondary replication that you'd use, for example, on
Oracle with Golden Gate and what’s typical on Postgres and MySQL. MongoDB, Cassandra,
Cockroach, Spanner, Aurora, they're all using this consensus-based replication. And what it
gives you, which is really novel over the primary, secondary asynchronous replication, is that
when you lose a data center or a replications site, with consensus-based replication, you're still
going to be able to get the right answer. You won't have potentially lost data. It's what's called a

© 2021 Software Engineering Daily 12

SED 1303 Transcript

recovery point objective. With Cockroach or other systems that use consensus-based
replication, you're actually able to set that to zero. Like you won't lose data.

With a synchronous replication, it's very easy to see how you can lose data. Your primary gets
the write, the commit, and it doesn't make it to the secondary. You lose the primary replication
site, you failover to the secondary. You don't have all the data. So you wrote something. It got
committed. And all of a sudden your application doesn't see it anymore when the failover
happens. That causes postmortems and a lot of headaches for developers, and teams and so
forth.

With cockroach, what you need in addition to the primary and the secondary is you need a third,
at least. You can have five, you can have seven, and that's kind of where you can dial how
much high availability you have. But typically, it's three. And so what consensus means is that
whenever you do a commit, you're not just writing to one out of the three. You're writing two in
majority. So two out of three, or three out of three. When that's true, you can lose a minority. And
one of the things that remains, one of the replication sites is guaranteed to have the right
answer. And they kind of coordinate and make sure the two that remained would coordinate and
make sure that they're giving you the right answer between them. That's geo replication,
consensus-based geo replication.

The really interesting stuff that kind of goes beyond that, when you really start thinking, “Hey, we
have a database that's distributed. We can do things like consensus-based geo replication.
We're also thinking, “What else is the cloud gives you?” It's not just availability zones within a
region. It's actually multiple regions.” And so you say, “Okay, if we can lose an availability zone
and still have uptime, could we lose the whole region and still have uptime?” And the answer is
yes. So you can have your replication sites in three different regions. Let's say you used US
Central, US West and US East. Now, you could lose the entire East Coast and still have Central
and West that would be replication sites that can always give you the right answer.

The cost of that, and there's always a cost, is that you've introduced more latency between your
replication sites. And so that means that when you want to get a commit, you're going to have to
wait longer. Availability zones within a region, they’re pretty close together. Like tens or
hundreds of miles across the country. You might have to have, say, 30, 35 millisecond latency to

© 2021 Software Engineering Daily 13

SED 1303 Transcript

get a commit. So you pay that price, but you pay it if you want to say I need a different level of
survivability. Not just losing an availability zone because a backhoe went through a network fiber
optic cable. But I want to actually allow a hurricane to knock out a big chunk of the power on the
East Coast and still have complete uptime in my business use case. So it's pretty fascinating.

And then I'll add one more step, which is quite exciting. And that's when you say, “Okay, this
database is distributed.” The point of distributed databases is to exploit the cloud. I think it's
something that isn't always obvious at first blush. But exploiting the cloud, it means, “Hey, in the
public cloud, you can get all these data centers close by. You’re going to have fast consensus
replication, lose a data center and still have continuity.” You can even use regions across a
continent and have even higher level of survivability, and potentially lower latency to West Coast
and East Coast and central users can kind of pin their data, the main copy of their data close to
them.

Then you realize the public cloud gives you access to every populated place on the planet. And
you're going to have data centers potentially next to every customer you care about. How do
you actually embrace that and exploit it? And there the answer is it's not geo replication,
because you don't necessarily – Lots of use cases, Quora is an example of one where you often
replicate a lot of the data you care about everywhere. But many other use cases think about
financial ledgers, and gaming, and retail accounts. And yeah, I say it's actually more common
than not not to want to replicate the data globally. You actually specifically want to keep the data
near the customer. And you may actually be required to only keep it near the customer, because
there might be data sovereignty laws and so forth. But when you start talking about users in
Australia, if you want to give them a great experience, you have to domicile their data close to
them. That gives them a nice low latency. Also, the data is in their legal jurisdiction. Everyone's
happy. So that's the next stage. And we call that geo partitioning. When you realize that, “Okay,
the planet is a big place, and there's significant latency between the furthest points on either
side of the globe, for example.” So you have to fundamentally embrace the idea of a distributed
database when you start talking about speed of light latencies that you simply can't improve
unless you have reimagined how your data architecture looks.

One interesting way to think about it's just there's different levels of scale that you care about in
your business. What happens at sort of the local level in terms of not losing data? How

© 2021 Software Engineering Daily 14

SED 1303 Transcript

survivable I want to be potentially even across regions? And then do I really have costs cameras
everywhere are potentially anywhere? And I want to make sure they have a great experience.
And so all of that is well-served with a distributed architecture. In fact, it's difficult to understand
how sort of those broader levels of concern could ever be well-solved without a distributed data
architecture.

[00:35:21] JM: Your mention of distributed ledgers made me really want to ask you about crypto
related stuff, because I'm sure you have some thoughts, but I'm not going to go there for this –
We’ll save that for another episode. As far as modern consensus-based implementations, have
there been development – So you were at Google, right? Okay. So what kind of developments
have there been in implementing that kind of consensus?

[00:35:48] SK: It's quite a bit of research. It's very active. It's. So when I was at Google, the idea
of consensus replication was very new. I think it is really only introduced in the late 90s, Paxos.
Yeah. And so Google, to my knowledge is, well, certainly one of the first companies that
productionized it. And that was in a system called Megastore. They might have used it
somewhere else before that. And then of course, became a big part of Spanner.

Cockroach, when we were getting started, Raft was the sort of new hotness, and it was just to
be a more comprehensible version of Paxos. I'd say that –I don't know. There're pros and cons
to all of these systems. But since then, there's been incredibly detailed and nuanced work
around Paxos and all kinds of things that I think if they'd been available to us earlier, we might
have been interested in using. So there's very active research. Lots of PhDs are looking into the
problem. I think maybe that one really important takeaway from this is that, while so much
interesting work has been done, and we might have used something different from Raft, if all of
that had been known to us when we started in 2014. We haven't changed it.

So you realize that consensus can have all kinds of sort of nuanced improvements to it. But
ultimately, consensus is at root consensus. And if it works well enough, one learning for us is
that – Let me tell you, one of my cofounders, Ben Darnell, he likes to say this, he spent a week
implementing Raft. And then we've spent now six and a half years making it work. You can
implement them as a school project, and many people do, the devils in the details. And it's
incredible how hard it is to actually make these things work in production. So, yeah, you start

© 2021 Software Engineering Daily 15

SED 1303 Transcript

with something. If it's consensus, I think it's the right way to do things. It doesn't matter which of
the different flavors. I'd rather be starting a database in 2021 to choose exactly what would be
the perfect thing. But maybe one more takeaway from this whole journey is just that the things
that you imagine a database needs to do in 2015 evolve. And some of that evolution informs the
interest in potentially having used a different consensus algorithm in the first place. But we didn't
know those things when we chose the algorithm. We didn't understand how important
geographic scale was, for example, to modern business use cases.

[00:38:25] JM: What do we need out of a distributed database in 2031?

[00:38:29] SK: That's a great question. I usually try to set the sort of threshold –

[00:38:33] JM: 2026?

[00:38:34] SK: 2025, ‘26. Yeah, that's kind of where my head is most of the time. I think the
answer is really quite apparent. All you have to do is look at what big tech is doing. By big tech, I
mean, let's call it the Fang architectures. Why has Google built distributed data architectures for
everything they release? And they have platforms, really, internally where you don't launch
something that isn't embracing a global footprint. Facebook has probably spent engineering
millennia. Literally thousand plus years of engineering time building their hugely complex and
extraordinarily functionally amazing distributed database architecture on top of hundreds of
thousands of MySQL nodes. So why do these companies spend what has to be hundreds of
millions of dollars on this R&D? And it's not just a single time cost, of course. It's cumulative.
And it goes on and on forever, because you have to maintain these things. And the answer is
because it gives you a competitive advantage. And so what does big tech fundamentally doing
there? Well, they're solving for two kinds of scale. Well, there’s resilience. So it's mitigating risk.
You always want to be up. You can't screw up the customer experience by not even being
available. So that's a huge part of it. But then it's like, “Okay, big tech is solving incredibly data-
intensive use cases.” But those had become very common. Even startups have them. Certainly,
the gaming companies that do well, they go from wanting a three node Cockroach cluster to like
potentially multiple hundreds of Cockroach cluster. It happen almost overnight. So data intensity
is another big thing.

© 2021 Software Engineering Daily 16

SED 1303 Transcript

But the global reach, or at least the multi region, wherever you want to do business, is a huge
part of what big tech is solving for, because their customers are everywhere around the world.
And, again, that has become extremely common. So of course, the multinationals out there that
are a bit older and need to catch up to big tech, or at least remain competitive. There's also
every startup.

So when I really think about what is a distributed database need to do in 2025, ‘26? I think it's
enable every developer, every new start to build the way big tech does. And those are
fundamentally the capabilities Cockroach has. But the challenge for us started off as being just
building that capability. Can we make a relational database that can do these things that
Spanner can do? The reason Google built all that stuff and put that money in there? But then
the new challenge is how do we bring that to every developer? Actually, it's a really incredible
challenge, because if you want to have in the sort of traditional way of running Cockroach, let's
say three regions around the world where you have customers, say, US, the EU, and APAC, that
would imply that you probably want three availability zones in each region. So we're talking
about nine different availability zones. You're going to probably want some number of nodes, at
least two in each of those, maybe three. So potentially 27 VMs for Cockroach nodes. You're
going to need nine different Kubernetes masters and that have costs within the clouds. You're
going to need the right kinds of load balancers in each one, the level, the global load balancer.
It's a tremendous amount of effort and fundamentally cost to give it to you in sort of the
dedicated package.

So what we've really been working on and investing in is that serverless consumption model I
was talking about, which is how do we take an incredible cost structure to build something like
big tech and make it so that you can have fractional ownership, like a virtual cluster that sits on
this truly globally distributed physical cluster? You get a fractional slice of that, which to you
feels like a completely isolated cluster both from security, from noisy neighbors. And that's a
huge challenge that you have to then grapple with. And then how do we make it so that the unit
economics work for us, right? So that we can give that away for free and really accelerate all
those new starts and make it so that developers look at databases differently and fundamentally,
don't expect to pay for them, so that they can do more, they can do it faster? And, hopefully,
choose Cockroach. So that's really what our vision is. It’s kind of how do you allow developers
feet to really never touch the ground? By the ground, I mean are you dealing with an operating

© 2021 Software Engineering Daily 17

SED 1303 Transcript

system? Are you dealing with Kubernetes? Are you dealing with instance types, and sizing, and
regions?

I see a world where you basically are able, as a developer, to create something on your laptop,
the backend, the mobile app, the web app, and launch that into the cloud, and have it scaled to
any level of usage, any geographies, any clouds. And just to have that all happen where you
pay for only what you use. So you start really small. You don't pay anything. You can scale to
run a major financial institution’s retail banking. So you want to have that whole journey happen
for a developer without them having to deal with the operational complexity that's very common
in 2021.

[00:43:37] JM: I know that the name Cockroach is supposed to convey that a CockroachDB
instance can potentially survive like a cockroach can, can survive a nuclear catastrophe, for
example, or the disappearance of a data center. The fact that you've built a company around
this concept concerns me that other pieces of infrastructure on the Internet are not so reliable.
Do you have any worst case scenario, Black Swan thoughts about what happens if, name your
cloud providers, East Coast Instance, or East Coast geo like disappears all of a sudden? Or
maybe even worse, a couple of those regions disappear. Are we just toast basically as a
civilization?

[00:44:29] SK: We just got through a global pandemic. So my confidence in the global system
has actually gone up, which is good, because it could have gone either way before this thing
started, in my opinion. If the whole East Coast goes down, no, we're definitely not toast, right? If
all of AWS goes down, like all of it, some sort of systemic flaw or some – I don't know. An actual
deliberate attack of some sort. It's still not going to take us down, right? We have plenty of
competitive offerings across the clouds. And, typically, most businesses choose one of the
clouds. But that's something that is on most CIOs kind of roadmap of how do we even limit our
systemic cloud risk? So I think it's not as much of a monoculture as might sort of seem to be at
first glance. You start to look at all the different ways that things are built. But there are some
monocultures in there, I think. There're things that are used across the clouds, like very critical
pieces of software. There might be zero day exploits in there. So deliberate acts that really
takes down the whole Internet is a possibility. And I suspect it would come from a state actor, if it

© 2021 Software Engineering Daily 18

SED 1303 Transcript

did. That would probably take the world down. And it's hard to say what would happen there, but
it would not be good.

We're not trying to protect it against that, right? Cockroach isn’t going to stay up if that happens.
Cockroach can stay up, though, if much more common failure scenarios. And that's what most
people are planning for realistically. Lose a datacenter, lose a region even. Potentially lose a
cloud. And we have customers that aren't in production, but are interested in having their
replication sites in three different clouds, private cloud, AWS, GCP, connect them with fiber. And
you actually could have AWS run into a pretty big systemic issue and still have complete
business continuity.

Again, like it's always the details catch you, right? Any complex application isn't just a nice
distributed application layer and then a nice Cockroach cluster underneath it, let's say. As soon
as you get to any reasonable level of complexity, you're using all kinds of other services. Some
of them are AWS specific. Some might be using Confluent for data connectivity. You could be
using Elastic, using Mongo. And this is not uncommon. Most use cases do use all kinds of
different tools and services out there. So the question is what really happens if you lose a cloud,
or you lose a region, or you lose an availability zone because you've created this complexity
with a lot of different things connecting? And typically what happens in those things, when one
thing stops working well, or at all, things start to pile up behind it, and it starts to take down other
systems, have cascading impacts.

The only way to solve for that, fundamentally, is you've got to run the full scale outage test. And
you have to do it with some degree of periodic frequency. Otherwise, whatever you build, the
complexity quickly goes beyond your last test. And you've probably introduced another sort of
failure point. So I hope I answered the question there. But I think there's a world that made,
maybe that 2026 timeframe, where there's really good stacks that help people manage that
complexity, and still get the kind of survivability across the whole complex architecture that
they're looking for.

If you use these vendors, you connect them in these ways, even things like low-code platforms
that are hosting many different applications that do lots of different things, but all on the same
architecture, right? That could be like really a monoculture that all fails together. But also, it's

© 2021 Software Engineering Daily 19

SED 1303 Transcript

more likely that you can use the economies of scale of having that one platform host many use
cases to do the right kind of testing so that all of the use cases survive when you have one of
these sort of major systemic failures.

So listen, it’s I think where a lot of the interesting work remains to be done in terms of proving
out the potential for a lot of these technologies, something as simple as Raft, right? But it's
underlying so much now in the larger ecosystem. And then I think now the thing you have to turn
your attention to is the various layers above Raft that become increasingly complex. How do
these complex systems interact in practice? And what happens if you have these major failures?

[00:48:51] JM: All right, we're up against time. Just to close off, you are definitely running one of
the most successful infrastructure companies that have been started in the last six or seven
years. Give me a few counterintuitive lessons you've learned about building a successful
infrastructure company in this era.

[00:49:14] SK: I don't know if this is counterintuitive, but by far, the most difficult scaling
problem is engineers, engineering talent. And it feels like it's only becoming harder. And so I'd
say that that's probably a good signal that if you're thinking about a career choice, becoming a
software engineer is not a bad way to go. I suspect most of the people listening to this blog have
already made that choice, or this podcast. So that's good. It's good for the future of our industry,
I think.

Counterintuitive, let me think about that. Well, here's one for you. When I started this company, I
never thought of myself as being interested in building technology that then had to be sold to
big, I guess, stereotypically slow moving enterprise companies. Choose your global 2000,
fortune 500 company. I felt like, “Oh my god! The amount of –” I Came from Google, where I
was building for Google engineers internally. There's very fast moving. You could have very
sharp edges. And then the idea that, “Okay, we're going to help modernize, help the digital
transformations of these big businesses.” That felt like I can't believe I'm doing this, because
that's going to not be something I enjoy. And it turns out that is incredibly enjoyable. So it's the
sort of, I think, other half of what the challenge is and the excitement is actually getting these big
customers and making them successful. And so that, just from a pure technologist perspective,
has been a surprise for me. And I'd say that's been one of the most rewarding parts of the

© 2021 Software Engineering Daily 20

SED 1303 Transcript

journey that we've been on as a company and me personally as an engineer, and also as a
CEO.

[00:50:58] JM: Spencer, thanks for coming on the show. Great talking.

[00:51:00] SK: It's been my pleasure. Thank you, Jeffrey.

[END]

© 2021 Software Engineering Daily 21

