
SED 1290 Transcript

EPISODE 1290

[INTRODUCTION]

[00:00:01] JM: ELT is a process for copying data from a source system into a target system. It
stands for extract load transform, and it starts with extracting a copy of data from the source
location. That data is loaded into the target system like a data warehouse, and then it's ready to
be transformed into a usable format for things like modern cloud applications. The company
Meltano provides code that manages ELT pipelines through an open source, self-hosted, CLI-
first, debuggable and extensible process. Meltano projects manage your Singer tap and target
configurations to easily select which entities and attributes to extract. These pipelines track their
own incremental replication state so they can pick up where the previous ones left off. Once
your raw data is in its target source, Meltano helps you transform it into a usable format. These
pipelines can run on a schedule and they can be fed to supported at orchestrators like Apache
Airflow. In this episode, we talked to Douwe Maan, a cofounder of Meltano, about their product
market fit and delivery plans. Meltano is an ambitious project. And I hope you enjoyed this
episode.

Our first book is coming soon. Move Fast is a book about how Facebook builds software. It
comes out July 6, and it's something we're pretty proud of. We've spent about two and a half
years on this book. And it's been a great exploration of how one of the most successful
companies in the world builds software. In the process of writing Move Fast, I was reinforced
with regard to the idea that I want to build a software company. And I have a new idea that I'm
starting to build. The difference between this company and the previous software companies
that I've started is I need to let go of some of the responsibilities of Software Engineering Daily.
We're going to be starting to transition to having more voices on Software Engineering Daily.
And in the long run, I think this will be much better for the business, because we'll have a
deeper, more diverse voice about what the world of software entails.

If you are interested in becoming a host, please email me, jeff@softwareengineeringdaily.com.
This is a paid opportunity. And it's also a great opportunity for learning, and access, and growing
your personal brand. Speaking of personal brand, we are starting a YouTube channel as well.
We'll start to air choice interviews that we've done in-person at a studio. And these are high-

© 2021 Software Engineering Daily 1

SED 1290 Transcript

quality videos that we're going to be uploading to YouTube. And you can subscribe to those
videos at YouTube and find the Software Daily YouTube channel.

Thank you for listening. Thank you for reading. I hope you check out Move Fast. And very soon,
thanks for watching Software Daily.

[INTERVIEW]

[00:03:03] JM: Douwe, welcome to the show.

[00:03:05] DM: Thank you, Jeffrey. Very happy to be here.

[00:03:07] JM: Meltano. Last time I talked to somebody about Meltano was a few years ago. It
was a project in GitLab basically like a project that was in a laboratory deep in the bowels of
GitLab where very few people were using it. But the hypothesis was powerful. And the
hypothesis was basically, if you look at what GitLab did for DevOps, we have an opportunity to
do that for data engineering. We have an opportunity to unify disconnected tools into a cohesive
workflow that is replaceable and modular, yet slightly opinionated. What have you learned in the
last few years that caused you to have enough confidence in the project to spin it out as a
separate company?

[00:03:50] DM: Yeah, that's a great question. So you interviewed Danielle Morill, who was the
general manager for Meltano at the time, about two years ago. And from the beginning, our
conviction around building Meltano has always been that, just like in GitLab, pulling together all
these different steps of the DevOps lifecycle into one platform that can kind of become better
than some of its parts with really great integration between all these different tools that might be
used by different people on the team, but getting them together in one environment. We thought
that similarly, in the data space, while there exists many point solutions that are really great both
on the kind of closed source proprietary side and in the open source ecosystem, there was a
significant opportunity for better integration between those tools, enabling better collaboration
between team members across different disciplines.

© 2021 Software Engineering Daily 2

SED 1290 Transcript

So from the beginning, the idea has been that GitLab’s data team wanted this kind of data
tooling that embraced those DevOps best practices and principles that are so key to Gitlab’s
way of working. And we thought that if we pick some of these best in class open source tools for
data integration, transformation, orchestration and visualization, bring them together in one
platform that provides the glue, we would build really compelling end-to-end data lifecycle
solution for teams, not just GitLabs.

So a few years ago, when you last spoke to Danielle, we were essentially working to realize a
proof of concept of a single platform that pulls together these technologies, and has this kind of
plug in architecture where you can bring in DVT for transformation, Singer, depths and targets
for integration, Airflow for orchestration. And this would make it kind of all C function as a
cohesive hole, one repository for a team to collaborate in.

For a while, we were really working on trying to get the end-to-end vision realized and showing
to companies that if they just adopt Meltano for their entire data lifecycle problem, they would
get a tool that basically allowed our team to get those same advantages from things like code
review, version control, continuous integration. But what we also realized is that at the time it
might have been too early to try to get users or contributors on board with such a broad vision
that requires a team, an entire team to adopt this platform all in one go. It wasn't very much built
for kind of piecemeal adoption where you could start with Meltano just for data integration, and
then maybe later on try out something else and convince your other team members to try to
rest.

So one of the big lessons took place about a year ago, which is when we pivoted to focus
specifically on the data integration part of the story. The realization we had is that while in the
open source data tooling space, there exists really great solutions for transformation. I think I've
mentioned DBT before. Orchestration, like Airflow, Dagster and Prefect. And for the visualization
step as well, tools like Superset and Metabase, are getting very mature. But the answer on the
data integration side of things, extract and load, getting data out of source systems into the data
warehouse was lacking. Singer existed as a technology. That’s the standard for open source
data connectors. That was originally created by Stitch, one of these close sourced data
integration vendors. But there wasn't a great solution or great answer to how to actually use
those connectors in a fully open source environment that you can self-manage on top of your

© 2021 Software Engineering Daily 3

SED 1290 Transcript

own infrastructure, instead of these connectors only functioning essentially as plugins for
Stitch’s hosted framework.

So a year ago, when we realized we hadn't really been able to pick up the users and the
contributors that we had been hoping to with the broad end-to-end vision, we started talking to
some of the people that we had been able to attract and had been following the Meltano story
since 2018. And we realized that the biggest demand, the biggest kind of vacuum in the data,
open source data space that we had identified was specifically on that data integration side of
things.

So really quickly, by not even modifying the product too much, but very much changing the
messaging and the positioning on the website and the material that we were publishing, within a
couple of days, usage numbers, contribution numbers, and community activity started picking
up significantly. So depth speaks to the importance of positioning and marketing. We literally
didn't change a line of code in the platform itself. But from one day to the next, people saw it
differently, started using only one aspect of this broad platform instead of the whole thing. And
since then, we've been able to attract people or kind of get them on board with the data
integration solution that Meltano offers, and then get them to try out all of the other kind of tools
that we integrate with that make up the data lifecycle, like DBT, for transformation, and having
Meltano handle the airflow configuration. And we, in the near future, will also be adding
integration with tools like Superset and Metabase, that you can manage the configuration of
your entire data lifecycle products in one place so that you get those advantages of version
control, different staging, and production environments, etc., that we think are very much the
future of data tooling as data teams increasingly start thinking of themselves as software
development teams that just happen to have a focus on data. And they're going to have the
same kinds of expectations from their tooling that software developers have had over the last
five years or so when it comes to continuous integration and platforms like GitLab.

[00:08:58] JM: The interview with Danielle a few years ago stood out to me for a number of
reasons. One, it showed that the model of building software that GitLab pioneered. And make
no mistake, this was a pioneering way to design a company. The idea that you would have this
framework of – you basically take a SaaS category, as big as DevOps, and you say, “We're
going to hang some scaffolding in this category. And we're going to kind of build around that

© 2021 Software Engineering Daily 4

SED 1290 Transcript

scaffolding. And we're not sure if we're doing it right. But we're going to iterate and we're going
to make it better over time.” It was a profound concept in company building. And GitLab has
been richly rewarded for that. But the idea that you could do that for other categories was
groundbreaking to me. So Meltano, it's no surprise to me that it makes sense in this regard.

But the other thing that stood out about that interview to me was this was the first time I heard
about DBT. And Danielle was singing its praises. I was like, “I've never heard of this technology
before that she's speaking about.” Fast forward two and a half years later, DBT is profound
company. Maybe as big a technology – I don't want to get too inflationary here, but maybe as
big a technology for the data world as MapReduce maybe? Potentially? Saying too much?

[00:10:16] DM: No. I don't think that is overstating it. Like DBT is amazing. We're really very
great friends with DBT. We have a really good relationship with the people at Fishtown. And
what it has done for those not familiar is broads kind of data analysts who were tasked with
putting together these transformation processes to pull data from different sources and combine
them to create kind of the data that they wanted to use in their dashboard or that they wanted to
use for particular kind of decision making outcomes. And take them away from these kind of
points and click drag and drop tools in the browser that kind of follow the block-based
programming style from tools like Logo. And it's introduced them to using SQL to define these
transformations essentially by defining a SQL view over the incoming data using SQL define
what you want the columns at the end of this stuff to look like. And then DBT orchestrating the
execution of the SQL queries, making those tables concrete, and then having the data analysis
visualization tooling point at the concrete tables that are the result of the SQL queries that are
essentially the transformation steps.

Probably, if the DBT people are listening right now, they think I'll have butchered their pitch. But
coming from a development perspective, that's kind of how I think about it. But what this has
done is brought these data analysts who have been relatively non-technical and more used to
kind of web-based applications and dragging and dropping and pointing and clicking into the
software development world and showing them that by writing something that is code, but it's
pretty easy to grasp, it's still SQL, they can start thinking of themselves as software developers
and use things like code review, which immediately increases the quality of their work, because
their team gets to have inputs, continuous integration and deployments that you can actually

© 2021 Software Engineering Daily 5

SED 1290 Transcript

verify that the SQL query is going to have the desired results before you actually throw it in
production and your CFOs board meeting dashboard breaks. And we are seeing a shift of these
people moving to a little bit more technical tooling and getting those same advantages that
software developers have been getting from these kinds of technologies like Git for years now.
And it's a massive shift, because it also allows the more technical data engineers on teams and
written to less technical data analysts to talk with the same vocabulary and really get in sync
and collaborate on the data project that they are team members on rather than treating
themselves as kind of different disciplines that throw stuff over the fence, ask each other
questions in phrasing they don't understand. And it makes a massive difference to just bring
these people together.

And Meltano is very much a continuation of introducing more data professionals to software
development style data tooling built on the strong conviction that data teams increasingly are
going to be software development teams with a data focus rather than something totally
separate that deserves totally separate tools.

[00:13:07] JM: Data engineering has basically been around forever, since the beginning of
software, in some primitive form. I don't know the lineage too deeply since before MapReduce.
For me, the world of modern data engineering begins with MapReduce. In any case, whether
that's how you demarcate the beginning of data engineering or not, a lot of companies have
legacy infrastructure in their data engineering pipelines. And if you have a data engineering
pipeline with a bunch of legacy infrastructure, probably you don't want to stand up this brand
new Meltano thing. Maybe you do. You could tell me if that's wrong. But I see Meltano is really
well-suited for the typical startup where you start with something like a marketing automation
company. You're building some marketing automation product. You're just trying to sell to
marketers. You're not doing anything with data engineering. You're just trying to build some API
or something that people are going to pay you some money for. And then you get some traction,
and then you get more traction, and then you grow. And then all of a sudden one day you say,
“Hey, we need data engineering.” In that situation, you can take Meltano off the shelf. Is that
your target customer?

[00:14:19] DM: That's a good question. I can get a little bit more into the legacy side of it in a
second. But one of the things that Meltano has definitely been built for is people with software

© 2021 Software Engineering Daily 6

SED 1290 Transcript

development background and expectations who are now getting data challenges, data problems
that they are tasked with resolving. They will feel right at home because it's a command line
interface, it has YAML files, it's a Git repo, etc. The other side of the fence, and we think that
these kind of groups are going to merge over time, is these data engineers or data analytics
engineers that have these less software developments that don't so much have a software
development background and are newly exposed to software development tooling and are
starting to figure out the benefits that they can bring to their teams.

So on the one you've got software engineers who are starting to tackle more data problems,
and you've got data engineers who are starting to think of their problems in terms of software.
And that means that we have two different audiences that we also have to kind of market
ourselves to a little bit differently. But since I see those fields merging, that's just something
which is kind of a vector of this particular stage in the data ops era rather than something that
will be the case forever. But that does mean that if you're a tiny little startup, you have two
engineers on board, maybe. And now suddenly, you have to set up your data integration
pipeline and you have to start doing data transformation and get some dashboards spun up.
That's combination of Meltano and DBT, and some of these other open source data projects that
are kind of extensible, and you can go into the code and debug them if you're frustrated with
things not working the way you want. It is pretty much perfect for that scenario.

When you are a larger team that already has a lot of data engineering expertise, they have all of
these different tools spun up. They might have switched from one tool to another every couple
years, as this space has been moving so fast. Then Meltano would just be yet another tool to
introduce, and there might be some resistance to this. But it's still something I would
recommend companies try, because one of the advantages Meltano can bring is offering a
standardized solution of building these custom connectors for sources and destinations that
might not be supported by your data integration solution of choice. Most data integration
solutions today, some of the famous hosted ones with their billion-dollar valuations, their
connector libraries really tap-out somewhere in the 100s to 50s, closer to 200 if you're lucky. But
that doesn't begin to cover the entire breadth of SaaS tools and data formats that companies
are using.

© 2021 Software Engineering Daily 7

SED 1290 Transcript

So today, if you want to pull data from a source that your data integration vendor doesn't support
yet, you can either build a custom Python script and run it in Airflow. And you'll end up
maintaining this indefinitely in-house. And it won't quite have features like incremental
replication, or great monitoring and logging, or even something as basic as, “Well, this
connector supports all of these different streams. But now I want to only pull data from this
particular entity type.”

So an advantage of building your connectors to the Singer standard, instead of just writing a
one-off Python code, is that you get a lot of this functionality out of the box. The Meltano SDK
for Singer taps and targets that we have recently built actually makes it super easy to build a
new connector and focus only on the source specific code where you can use requests Python
library or some pythons client API library for the API in question. And the SDK framework then
handles everything to do with adopting or complying to the Singer specification and allowing
your little connector project to be plugged into any Singer compatible tool like Meltano. And
because it is written to a standardized specification, it's something you can easily open source.
And there will be thousands of people around the world who will be comfortable contributing to
it, fixing bugs in it, instead of that being something you have to do in-house. And since it speaks
the Singer protocol, tools like Meltano can immediately offer functionality like incremental
replication, and better monitoring, and logging, and tracking of metrics, and allowing you to
identify problems with your pipelines by then also integrating your pipelines with something like
DBT tests for great expectations that you can learn about whether the data still has the
expected format, which is much, much more difficult if it's just some Python codes one of your
engineers wrote as a one-off.

[00:18:21] JM: So when I look at how this market is unfolding, I see a lot of importance in the
orchestrator. It's similar to what happened in the Kubernetes world, where if you win
orchestration, you kind of win everything. Not completely. But it's such a key component. And
we're in this weird time where the dominant orchestrator is Airflow. Airflow kind of feels like the –
I don't know if this analogy makes any sense to you. But it kind of feels like the Apache Mesos
of data orchestration, where it's used people like it, it does the job, but it feels like there is room
for something better. And that's the thesis of Prefect and Dagster. I guess it's also maybe
perhaps the thesis of Astronomer, or I think there's maybe another Airflow company. But
Astronomer, the Airflow company, if they can be the Mesossphere, or the D2iQ, that's not a bad

© 2021 Software Engineering Daily 8

SED 1290 Transcript

place to be if they're the D2iQ of data engineering. But I don't know. I'd love to get your
perspective on that analogy and where you think the kind of data stack is going with regard to
that hard dependency of the data orchestrator.

[00:19:39] DM: Yeah. So data orchestration, or in the case of these tools, kind of like workflow
automation and their DAG processors, it's that problem of taking different steps in your data
pipeline, tying them together, managing that, managing the schedules, managing the error
handling, etc. I think Dagster and Prefect both have a really interesting kind of approach that is
heavily inspired by Airflow. In some cases, they also have original Airflow developers and
advisors to these projects. And I feel like, over the coming years, either of those or both of those
are becoming the standard where Airflow has been that for the last couple years.

I think what you're seeing there's that Airflow very clearly was one of these kind of early open
source data tools that now has kind of had its heyday, and with all of those lessons, and also
adopting data principles more explicitly, there's a massive opportunity for Dagster and Prefect to
take those lessons and just do it better. That does mean though that companies would need to
migrate from one to the other. And that can require rewriting DAGs, or hoping that there's some
way of converting DAGs from A to B. But it's kind of inevitable that that will happen.

I think the way that Meltano can fits in here is by saying, “We are not ourselves going to get into
the orchestration or workflow scheduling problem. We will provide that foundation, that lowest
layer of a team's data product that allows these different tools to integrate really well and have a
consistent configuration layer and deployments methods.” So Meltano integrates with Airflow.
And we have plans to integrate with Dagster and Prefect as well. One of the advantages this
brings is that a team can start with Meltano with one particular set of plugins. But over time, as
the needs of the team evolve, or as some new hot open source data tool arises, they can easily
switch over to the new tool without having to completely rewrite the data integration part of their
pipeline, the transformation part of their pipeline, because Meltano is able to kind of provide the
payloads what happens inside these DAGs, while the orchestrator remains responsible for
actually scheduling and running them.

So since in the data space, the data tooling is evolving so quickly, and every couple of years it
seems like there's a completely new standard. And whatever's old is no longer cool, even

© 2021 Software Engineering Daily 9

SED 1290 Transcript

though two years ago it might have been drawing tens of thousands of people to conferences.
It's a tool like Meltano that will make it much easier and more accessible for teams to migrate
over to newer solutions, because they can kind of assume that if Meltano supports it, then I'll be
able to adopt it easily and it will fit into my existing workflow. I won't have to completely have to
learn again how to deploy or configure these things, because Meltano takes care of that
integration between the different components in the lifecycle, which we are currently primarily
thinking of as data integration, which is where Singer comes in, transformation that’s DBT. Data
orchestration, currently Airflow, Degster and Prefect to come, and then data visualization with
tools like Superset and Metabase. And we are starting to also add support for data testing with
tools like great expectations and DBT test, and for various tools to do with data lineage and
observability.

I feel like Airflow is last generation data tooling. And we are very much at the start now of the
next generation. And I think Dagster and Prefect have a really great position to become the
dominant orchestration solution. But since right now, building a modern open source data stack
for a team takes so many different tools and tying them together. Meltano has kind of a unique
position underpinning a team's data project and bringing these best in class tools together.
While we can be somewhat unopinionated with regards to who the winner is going to be, we just
want to make it really easy for teams to use whatever they want to use and migrate over to the
winner if they so choose.

[00:23:29] JM: That's very diplomatic. Do you have any perspective on who's going to be the
winner?

[00:23:33] DM: Between Dagster and Prefect?

[00:23:35] JM: Sure.

[00:23:36] DM: I really like Prefect’s model of kind of decoupling the actual execution of the
workflows versus the scheduling, because I think, increasingly, and this is something that
Meltano taps into too, there will be situations where teams would rather have the data not flow
through systems other than those they manage themselves. This could be for privacy or security
reasons. Or you might have to do with HIPAA compliance if you’re working with health data, or it

© 2021 Software Engineering Daily 10

SED 1290 Transcript

could just be a simple matter of massive amounts of data and not wanting to pay for an event
with and having that flow through some other provider.

So I think that Prefect is onto something by decoupling the scheduling. Making sure that the
scheduling infrastructure never needs to see any data while the actual logic that you have
written yourself that can run on your own infrastructure without having to deal with that
scheduling problem. But I think it's far too early to pick a winner. Both of these projects have
really great teams and communities around them. And I think there's going to be a good amount
of kind of cross-pollination of ideas too as these teams and others figure out what's the next
generation of orchestration tooling is going to look like. But Airflow increasingly is starting to look
like a really great source for inspirations and things to learn from, and also things to do
differently, because they haven't scaled or matured as well.

[00:24:59] JM: Have you met Nick? Have you talked to Nick from Dagster?

[00:25:02] DM: Not directly. No. But we're in some Slack workspaces together.

[00:25:06] JM: Okay. Well, maybe I'll introduce you. I think you would mutually benefit from a
conversation.

[00:25:10] DM: Definitely.

[00:25:11] JM: Yeah. So what I like about Nick's approach, Nick is a cocreator of GraphQL, and
he knows developer ergonomics in a way that few other people have explored. And that just
puts a lot of like blind faith. I invested in his company, full disclosure, but I kind of have blind
faith, just because I've seen him solve this kind of problem before. And it's a world where that
kind of skill kind of trumps everything else, because, basically, it's a last mover advantage type
market where you can have the best solution and be late to the party and still win. We saw that
with container orchestration. Kubernetes was not by any means the first solution. There were
like five other orchestrators at the time. And then Brendan Burns just said, “Okay, I figured it out.
I did the best one. Here it is.” And that's what happened. Anyway, not to try to influence the
direction of the orchestration wars. I talked to Prefect. They're doing noble work. Anyway –

© 2021 Software Engineering Daily 11

SED 1290 Transcript

[00:26:13] DM: Yeah. I mean, it's probably another coincidence that on our roadmap for more
tools to integrate and support, there has been more demand than requests for Dagster than
Prefect. Of course, like you said, it's way too early to tell just by usage numbers or something
who's going to win. But I like that there is so much happening in the space right now. And both
projects will benefit from both existing, and all users will benefit from competition in this space.

[00:26:37] JM: Let's take that customer type, like the typical customer type. Okay, I'll put it this
way. I started a new company recently, or I'm working on it.

[00:26:45] DM: Congrats.

[00:26:45] JM: It'll be a company. Thank you. It's a game. A game has basically nothing to do
with data engineering from day one. But there will come a time in the future where I'll say, “Hey,
things are actually working.” All of a sudden, I want to do data engineering. If I was evaluating
the market, my approach to data engineering might actually be to say, “The first thing I'm going
to do is use Segment. And then I’m going to take Segment and I'm going to just put Segment all
in my infrastructure. I don't care how much it cost. I'm just going to go all in on Segment,
because it's the highest level form of data engineering.” Why would I do Meltano over Segment?

[00:27:22] DM: Well, especially if you're starting a company like this and you're going to have
engineering people on board, but not anyone with data in their title. When it comes to setting up
a data integration or data engineering solution, one thing you're going to look for is, “Well, we're
developers. We expect this kind of stuff to live in a repository. We expect that changes need to
go through code review. And we expect that the deployment will be handled by continuous
integration and CD.” And ideally, it's something we could self-host. And if it's a Docker container,
then I know how to do that.

Of course, you could also, if you have a little bit of exposure to data tooling, just find Segment.
Go to their interface, pay them, blog, and point and click to put together two connectors and
enter your credentials, and then just let them handle it for you. But if you're a developer, you will
probably start feeling a little bit limited. And you'll start feeling the hints of inflexibility the moment
you set up any kind of web-based SaaS tool. And I think Meltano is going to be a really
compelling solution, because it is that easy to set up a data integration pipeline and deploy it

© 2021 Software Engineering Daily 12

SED 1290 Transcript

with the existing library of more than 200 connectors in the Singer ecosystem, and a super low
barrier to creating new connectors. And I think developers who give this a try, even maybe
before Segment or after Segment, will just fall in love with it really quickly, because it
approaches data integration in terms and with tools that will just feel extremely natural to
developers in general, software engineers in general.

So, yeah, if you want to spend no time at all setting up your own infrastructure or even worrying
about, “Okay, I have to set up this repo and then deploy it somewhere,” then a tool like Segment
is a really great option. But what we are seeing is that pretty much every company that starts
with one of these hosted off the shelf data integration solutions with their heavily curated in-
house library of connectors will eventually have a data source that is not supported by that
platform. And then as I described earlier, you end up writing your own code anyway. And then
you start thinking like, “Well, now I have two data integration solutions.” Or maybe you’re one of
the companies that actually becomes a customer of multiple closed source hosted data
integration solutions, because they have overlapping libraries, and you want some of the one
and some of the other.

And then you'll start thinking, “I wish I just had one standardized approach that fit into my
development workflow where I know that there will never be a limit on connectors, because it's
super easy to write my own. And there are hundreds and hundreds already being maintained by
the community.” So I feel like as developers are more inclined in general to just go with kind of
codebase tooling that they can deploy in a Docker container, Meltano will be the absolute best
choice for a software development team that suddenly has to deal with data.

[00:29:57] JM: So what's the onboarding like? So let's say I’ve got likes some interesting
customer transactions that are happening across my game. For example, like let's say I have a
game that has some purchases, or microtransactions and stuff like that, and I'm like, “Okay, I'm
finally at the point where I have some product market fit. I've got some money coming in the
door. Now I really want to start studying my data. And I want to see what is leading to
profitability.” And let's say like my data is all in Firebase, or Firebase and maybe BigQuery, or in
some blob storage, or standard places that I'm throwing this data. What am I doing to get
started? What's the road from Meltano day one to actual productivity?

© 2021 Software Engineering Daily 13

SED 1290 Transcript

[00:30:40] DM: Yeah, that's a good question. So the first thing you would do is install the
Meltano PyPI package, pip package on your local machine. Just like most software
developments, you start in your development environment, and then the step of deploying to
production comes later. But what’s going to be running locally is going to be pretty much
identical to what you would end up deploying. So you install the Meltano package, then you
create a Meltano project by running Meltano in it with some project name, which builds a
product directory with a Meltano.yaml file that will hold the configuration for the different plugins
that you're going to bring into your project.

The next step then is to add a couple plugins. And in this case, the plugins you're looking for are
first of all an extractor, or a Singer tap for, like you mentioned, Firebase, BigQuery. Maybe
you've got some data in Postgres. All of these have well-maintained connectors that are not all
supported out of the books by Meltano, but through the Meltano hub for Singer taps that we
have set up. It's really easy to discover these and find the installation instructions.

So then you run a couple of commands. And then you end up with this definition for tap
Firebase in your Meltano.yaml file. And you can configure it using the Meltano config CLI. And
then the next step is to pick a loader, which is a connector for a destination. So this depends on
where are you going to want to have all of this data end up. If you already have BigQuery set up
with some data that's coming from your game or from your customer transaction handling
infrastructure, then BigQuery is a natural choice for your data destination as well. So then you
would install the target BigQuery loader. Similarly, configure it using the Meltano config CLI, or
by directly modifying meltano.yaml. And then you can immediately use the Meltano ELT
command to take a tap and the target and run them together so that any data that the tap
manages to extract will be directly fed into the loader in order to be loaded into BigQuery. You
will do this three times if you have three different sources, but you can use the same loader
configuration each time. And then you end up with three different pipelines. You can run these
locally just by running the CLI command. But if you want to automate running these pipelines,
you can additionally add Airflow into your Meltano project. So you would run Meltano, add
orchestrator Airflow. Meltano would add the Airflow pip package into Meltano’s own definition,
meltano.yaml, and you would get the opportunity to configure airflow. Although the default
configuration should be enough to get you started, because Meltano also automatically builds a
DAG generator, an Airflow compatible DAG generator, that looks at Meltano’s scheduled

© 2021 Software Engineering Daily 14

SED 1290 Transcript

pipelines and creates a scheduled DAG for each of them. So then the last step to get this
running locally is to actually start Airflow scheduler using Meltano invoke Airflow scheduler. And
then you have pipelines running on the schedule you configured with the credentials you've
configured automatically pulling data out of Firebase and BigQuery and loading them into
Firebase, or loading them into BigQuery, or whatever destination you had chosen.

At this point, you have all of this running locally in a directory that you can easily initialize a git
repo inside, push it up to GitHub, or GitLab, or what have you. And then the next step is going to
be how do I deploy this. In order to deploy a Meltano project with all of the plugins it contains,
which in this case are the extractor and the loader and Airflow, you can really easily containerize
your Meltano project by adding the Docker files to your project. You can actually run Meltano
add files Docker, and it will immediately add a Meltano specific Docker file, a Docker ignore file,
and everything else you would want to build a Docker image for your project. That then exposes
to Meltano’s CLI SD entry point so that you can host this Docker container somewhere, tell it to
run with the Meltano invoke Airflow scheduler commands. And then you will have this
environment running that will automatically run those pipelines you configured on a schedule.

So you can do this locally with your local Docker, of course, or you can do this in production if
you want to build the image and push it somewhere. But if you want to use continuous
integration and deployment on GitLab CI or GitHub Actions or something else to do this, you
can really easily add the appropriate GitLab CI configuration file to your Meltano project as well
by running Meltano add files GitLab CI, which will add a GitLab CI YAML file that will
automatically build the Docker image using that Docker file that have been inserted at the
previous step. And then has kind of a deployment step where you can build an image, push it to
Docker Hub, or to GitLab’s own registry. And from there, you can point your Kubernetes
infrastructure or whatever Docker runner you've got at that Docker image and tell it like I
mentioned before to initialize it with that Meltano invoke Airflow scheduler command.

So if you're a developer, all of this sounds pretty straightforward. You've got a CLI, you've got a
Git repo, you've got a Docker image that gets built. And then you just have to initialize the
Docker image with the appropriate commands, and then your whole data integration setup is
going to be running.

© 2021 Software Engineering Daily 15

SED 1290 Transcript

[00:35:39] JM: Wonderful. And the actual time it takes to do this? What would your estimation
be? Like are we talking a week? Two weeks?

[00:35:48] DM: Of course, that's kind of depends a little bit based on whether the connectors in
question already exist for the source that you want to integrate, or whether it's well-maintained
enough that you can just use it without hitting any hurdles. Because in some cases, these
connectors have been built by one particular data team, and it works in their scenario. But then
if you're using it with a different version of the source or something, or if the API has changed
over time, you might run into a Python error that you might have to fix this yourself. But that is
just the nature of open source. And you'll see the same with API client libraries. So that might
take a little bit extra work if you want to fix that bug. But if you're a software engineer, that
should be relatively straightforward.

Otherwise, all of those CLI commands I'm talking about, if you know ahead of time what you're
planning to do and you know how Meltano works and how it expects you to set up a project, you
can get to that final running and production step within an hour, no problem. I recorded a speed
run video a couple of weeks ago of going from zero to running a data integration pipeline that
pulls data out of GitLab and loads it into a Postgres database, and the entire video take 90
seconds, because of course, that's me knowing exactly what to type. But if it takes you weeks to
set up a project like this, then we have failed in our mission, because we have aimed to make it
extremely easy to put together these data pipelines and to deploy them. And if you are
comfortable already with deploying Docker containers on to Kubernetes or similar platforms,
then everything on the development side of things on your local machine should be done within
30 minutes, and then getting it running somewhere externally in production should take another
30 at most.

[00:37:18] JM: Just to press you on this point –

[00:37:20] DM: Please.

[00:37:21] JM: Like time to market with Segment, I'm putting in a few lines of code to start
spitting metrics into Segment’s big set of well-defined user experience infrastructure. Meltano,
I'm getting improved configurability, but I'm not getting this real ease of use streamlined just

© 2021 Software Engineering Daily 16

SED 1290 Transcript

insert a little bit of API code Stripe-like experience. I mean, are you sure you're not just catering
to kind of a different price point type of customer? Different abstraction level of customer? Are
these actually comparable product experiences that I'm making here? Or am I totally off-base?

[00:38:00] DM: I think there's a significant difference there, which you kind of called out by
saying, “With Segment, I just have to add a couple of lines to my code. And then we'll end up
sending this data to Segment.” The approach that Meltano takes right now, which is pretty
typical for these kinds of data integration solutions, is that it has a connector that connects with
a data source that already stores the data in some form and exposes it either through a SaaS
API or a file somewhere in an S3 container. Or it's a database with a well-defined protocol for
pulling data out of it.

So Meltano assumes that you have already somehow gotten your data into Firebase or into one
of these data stores. And then Meltano can directly connect with that source and pull the data
out and then load it into some other destination. If you want to add little bits of lines of code in
your existing game implementation and all of the places where you want to push some specific
bit of data to Segment, Meltano doesn't help with that currently. It does not have its embedded
data store that you can write some lines of code to push data into. It assumes that you've
already written the lines of code that get the data somewhere. And then Meltano can just put it
out there and go from there.

So Segment and Meltano, I would say, are not directly comparable because of that distinction.
Meltano is more comparable to tools like Fivetran and Stitch that have this list of connectors for
sources and destinations and allow you to configure those and set up your scheduled pipelines.
But we are working with people in the community and seeing if there are other open source
tools that we can adopt like Snowplow and hook those into your Meltano project that Meltano
can directly take the data that your Snowplow snippet might have sent just like Segment, and
then move that to the destination where you want it to end up.

[00:39:43] JM: Switching topics completely. What's the mechanism for spinning out a company
these days? If you want to spin a company out to GitLab, how do you appropriately do that
equity-wise, ownership-wise, venture capital-wise? What's the best strategy?

© 2021 Software Engineering Daily 17

SED 1290 Transcript

[00:40:01] DM: That's a great question. I think the Meltano spinout story is a little bit different
from some other stories you might have read about open source projects spinning out of the
organizations in which they were created with a new entity set up around them. One significant
difference is in the fact that's, from the beginning, back in 2018, the goal for GitLab with Meltano
has been to build a really compelling tool primarily initially for its own data team to benefit from,
and then to kind of turn into a separate product line or business unit within the GitLab
organization. So it's not one of those stories where just one of the people on the data team at
Airbnb or Netflix built something really cool, and then just kind of ran off with it. It specifically has
been incubated inside GitLab for a number of years, because we realized there will be a
significant opportunity here.

So the way that the spinout worked is that in order to allow Meltano to really kind of spread its
wings, we identified that it wouldn't make much sense for it to stick around within GitLab,
because GitLab has been focusing increasingly and all the way from the beginning really on
this, the single application for the entire DevOps lifecycle. And we didn't see a path to fitting
Meltano into that bigger platform. It was basically always going to be a separate project.

And at the same time, we were realizing that the kind of infrastructure and incentives around
compensation that are set up in a big company like GitLab with 1,300 employees right now, are
not quite what you want if you're starting to put together an early startup team that is going to try
to get a brand new project off the ground.

What all of this means is that, in the spinout, GitLab transfers all of intellectual property into the
new entity and receive shares in return. And then we started pitching to venture capitalist firms
that we have been building relationships with over the last year to see if any of them would bite
in order to invest in the seed round. We got a couple of term sheets. We chose one party that
we were really eager to work with and just really inspired by their enthusiasm and also the kind
of the investments thesis that they had around open source data integration tooling. And we
attracted a number of angel investors to join the round. And now we've spun out. So GitLab
retains a significant share, because it was incubated there, and it was always intended to be a
business unit that would eventually bring GitLab additional value. And we've brought some
investors on board to fund this next stage of our growth.

© 2021 Software Engineering Daily 18

SED 1290 Transcript

[00:42:21] JM: So where is data engineering going?

[00:42:26] DM: Well, my strong conviction, especially coming from a strong software
engineering and open source background. For context, I've been at GitLab for six years now. I
joined when the company itself only had 10 people working for it. But we already had an open
source community, I think, in the many hundreds at the time. When I first started learning about
the state of data tooling, data engineering tooling, data analytics, and analytics engineering
tooling, I was just surprised to see that it was very reminiscent of the software engineering
space five plus years ago before DevOps version control, code review, CI/CD really became
kind of staples in every company that wants to build an efficient software engineering team
building high-quality products and with high confidence that what they're building isn't riddled
with bugs. I was surprised to see that the data space seemed behind.

So I very strongly believe that that space has been deprived a little bit of the advantages that
have come to the software development space over those past years. And I think we are at the
beginning of this new wave of data ops tooling that embraces DevOps principles from the
foundation in its DNA, and really starts giving data teams the tooling they deserve to build
products with more collaboration and more efficiency and just higher quality results At the end,
leading to higher quality decisions, which is, of course, what companies ultimately care about
when it comes to their data team.

Quick shout out to a talk that one of my Meltano colleagues, Taylor Murphy, did with Emily
Schario, who was one of GitLab’s – Was at GitLab for a while. And it's now data leads, or I'm
probably messing up the title, but data something at Netlify. They did a great talk a couple
weeks ago about how to run your data team like a product team. How to think of yourself as a
team building a data product with all of your colleagues within the company essentially being
your customers and your users. And this fits very much into this vision that we are chasing after
with Meltano, where the data team is just a product team building a software product that
happens to have their colleagues as the primary users, but they should approach it and get the
same advantages of software developments’ best practices that their actual product
development colleagues have. And I feel like I think you'll start seeing more and more that
people will expect tools that embrace kind of pipelines as code. Or in general, bring these data

© 2021 Software Engineering Daily 19

SED 1290 Transcript

challenges into the realm of code and get repos and stuff that we can discuss on a merge
request or a pull request discussion page.

[00:45:03] JM: What do you think of the divergence in the Snowflake-based world versus the
Databricks-based world?

[00:45:15] DM: How would you characterize that divergence, Jeff?

[00:45:18] JM: I would say that I see these two technologies as basically the open source data
engineering platform company with the most potential versus the closed source data
engineering company with the most platform potential.

[00:45:36] DM: Yeah. I think that, in this comparison, of course, Snowflake being a closed
source version, and Databricks and Spark being an open source, I think that how quickly
Snowflake has been able to find adoption speaks to the accessibility problem of open source
solutions and the higher barrier to entry not just to like start it up and deploy it somewhere, but
also to wrap your head around it. Like Snowflake is extremely easy to get started with in part
because it is a hosted platform where you don't have to worry about any of that to yourself. But I
think there is a massive opportunity for perhaps the next generation of open source data
warehousing tooling, whether that's something Databricks comes up with in an iteration of Spark
consumer technology, or something totally new, to have an answer to Snowflake. And I think
that Meltano can actually help there with making the configuration and deployment and
integration story really easy. We have started looking into open source data warehouse
technology already that is similarly a kind of object storage-backed like Snowflake, and can
really easily be brought into an existing Meltano project. And that barrier to entry, we want it to
be so low that you can add one of these technologies by running that similar Meltano add
storage full command. And having Meltano automatically hook it up with your DBT, with your
connector, so that you can be off to the races.

We've started working with some community members on Athena supports in Meltano, which is
also supported in DBT already, which I think is a great sign of things to come. But in general, I
think that the data engineering space will be longing for that additional flexibility and debugability
and extensibility that only open source software can offer. And then we are seeing that

© 2021 Software Engineering Daily 20

SED 1290 Transcript

increasingly data teams using closed sourced products are supplementing that with open
source stuff on the site. And then it's just a matter of time before they move over to open source
entirely.

[00:47:29] JM: If you're trying to say that if you look at Snowflake, and Snowflake is the closed
source state of the art data warehouse, and we're now waiting for the open source answer to
snowflake? Isn't that a little bit like saying we're waiting for the open source answer to AWS?
Because Snowflake is basically so hard to build and so hard to orchestrate with storage tiers
and all the stuff that you need to give this seamless experience. Like you could never operate
an open source AWS. So why would you be able to operate an open source Snowflake?

[00:48:05] DM: I mean, I think there is a significant difference there whether you're running a
massive platform with millions of users on it, versus something that can scale enough for one
organization. And of course, open source kind of implies that you will be self-managing it or at
least you'll be still hosting us somewhere in cloud infrastructure, but you only be responsible for
scaling it to the extent that your organization needs. So I think the problem of building an AWS
or building a Snowflake when you want to offer it to everyone is harder than building something
even for one specific very large organization. But I don't have a great response to that question.
I’m also kind of glad that that's not our problem to figure out, because the integration problem
that we are focusing on, I don't want to say it's easier. The value we bring will be massive if we
can introduce more people to the modern open source data stack. But I myself not in the
business of data warehousing or data warehouse tooling.

[00:49:04] JM: Alright. Listen, I really enjoyed talking to you. And I think Meltano is a really,
really cool project with a lot of potential. So, congratulations.

[00:49:11] DM: Thank you so much, Jeff. Glad to have you on board as a fan. And just one last
notice, mention for everyone listening today, check us out on meltano.com. Join our slack
community with upwards of a thousand members. And yeah, see what Meltano can offer for
data integration and the data ops era to come.

[00:49:28] JM: And apply to join the company if you want to be at the next GitLab.

© 2021 Software Engineering Daily 21

SED 1290 Transcript

[00:49:31] DM: Definitely, definitely.

[00:49:33] JM: Alright, great talking to you.

[00:49:34] DM: Thanks so much, Jeff.

[END]

© 2021 Software Engineering Daily 22

