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[INTRODUCTION]


[00:00:01] JM: The company Streamsets is enabling DataOps practices in today's enterprises. 
Streamsets is a data engineering platform designed to help engineers design, deploy and 
operate smart data pipelines. Streamsets data collector is a codeless solution for designing 
pipelines, triggering CDC operations and monitoring data in flight. Streamsets transformer uses 
Apache Spark to generate insights about data across multiple different platforms. Their control 
hub is a single hub for managing data pipelines, data processing jobs and execution engines. 


In this episode, we talked to Arvind Prabhakar, CTO at Streamsets, about the history of data 
engineering and how we got to where we are today. Arvind is also an official member of the 
Forbes Technology Council and a member of many other projects on the Apache Software 
Foundation. He was previously Director of Engineering at Cloudera and a software architect at 
Informatica before that. I hope you enjoyed today's episode with Arvind Prabhakar.


Our first book is coming soon. Move Fast is a book about how Facebook builds software. It 
comes out July 6, and it's something we're pretty proud of. We've spent about two and a half 
years on this book. And it's been a great exploration of how one of the most successful 
companies in the world builds software. In the process of writing Move Fast, I was reinforced 
with regard to the idea that I want to build a software company. And I have a new idea that I'm 
starting to build. The difference between this company and the previous software companies 
that I've started is I need to let go of some of the responsibilities of Software Engineering Daily. 
We're going to be starting to transition to having more voices on Software Engineering Daily. 
And in the long run, I think this will be much better for the business, because we'll have a 
deeper, more diverse voice about what the world of software entails. 


If you are interested in becoming a host, please email me, jeff@softwareengineeringdaily.com. 
This is a paid opportunity. And it's also a great opportunity for learning, and access, and growing 
your personal brand. Speaking of personal brand, we are starting a YouTube channel as well. 
We'll start to air choice interviews that we've done in-person at a studio. And these are high-
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quality videos that we're going to be uploading to YouTube. And you can subscribe to those 
videos at YouTube and find the Software Daily YouTube channel. 


Thank you for listening. Thank you for reading. I hope you check out Move Fast. And very soon, 
thanks for watching Software Daily. 


[INTERVIEW]


[00:02:50] JM: Arvind, welcome to show. 


[00:02:51] AP: Thank you very much, Jeffrey. Glad to be here. 


[00:02:53] JM: You work at Streamsets. Streamsets was founded in 2014. And the world of data 
has come quite a long way. Data infrastructure has come quite a long way since then. I'd like to 
know about the initial thesis of Streamsets and the way that the company saw data 
infrastructure on day one.


[00:03:16] AP: I could go on forever answering that question, but I'll try to stay grounded and 
talk about something that most people can relate with. So think about a very simple example 
that most of us have gone through in our lifetimes, or some of us, who are a little elder than 
others, is this transition from film-based cameras to digital cameras. And the film-based 
cameras, that I grew up film-based cameras, and those were expensive, and they required a 
sufficient amount of planning. And you can’t just like keep clicking pictures, because they were 
expensive, and they required time investment and getting the final output out. So consequently, 
all the pictures that you took as a family were well-planned, or so, or at least there was an 
intention to plan them well so that you kept the costs in check, as well as you got the product 
that you want it. 


Nowadays, however, with the advent of digital cameras and every phone carrying like very 
superior high-end cameras, you take a trip with the family, you come back with thousands of 
pictures, and there is no way that you can actually curate very easily or very quickly all the 
specific nuggets that you want to string together in a memory about your trip. So, consequently, 
what ends up happening is you have this delusion of pictures, but then you end up relying on 

© 2021 Software Engineering Daily 2



SED 1281 Transcript

the very algorithms that Google Photos and Apple Photos provide for you to recognize places, 
people, the kind of landscape that you're dealing with, right? So these tools help you curate the 
necessary extract the necessary things that you need to string together a set of pictures to form 
the memory that you're looking for, that you want out of that experience. 


But if you take a step back and see how this landscape has changed, what has really happened 
is you started off with a plan for getting some pictures. But now you've ended up with an after 
the fact processing to extract the pictures from a whole bunch of pictures that came your way. 
And that same inversion of focus has happened in the enterprise with data infrastructures. 
There was a time prior to 2010 when every bit of information, every piece of information that the 
enterprises worked with, was well thought out, designed, and kept in mind while the applications 
evolved around those. That funnel has inverted. Now, data is everywhere, and applications are 
popping to make sense of data. It's a very similar parallel. 


So what are the tools you need to succeed in this world, the tools that the enterprises need to 
succeed in this world have to work with a mindset that these pictures already exist. You need to 
get to the right pictures so that you can form your memories. I hope that gives a little bit of a 
context on the kind of problem space that Streamsets is in. And this was really the epiphany that 
got us to say that the problems we solved for in data integration in the past two decades prior to 
2010, they have come back, and they've come back in a very different manner that the old tools 
and old systems cannot solve for.


[00:06:25] JM: Okay. So you've described something pretty abstractly. I'd like to get a little bit 
deeper. So if we go back to 2014, data infrastructure in 2014 mostly meant, if I understand 
correctly, Hadoop pipelines, some data warehousing, some batch jobs. But compared to today, 
data engineering was totally in its infancy, where today you have Airflow and Spark jobs and a 
number of other streaming systems. You have much better data warehouses. You have data 
pipelines that feel more stream-oriented and continuous rather than batch. So if we take the 
world in 2014 versus the world of today, what are the products that Streamsets has built along 
that timeline?


[00:07:12] AP: So the core, the heart of our platform, is centered on this notion of data pipeline, 
smart data pipelines. Data pipelines, as you pointed out, Jeff, they existed. You could have 
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Flume pipelines, Kafka pipelines. Prior to that, Informatica and Talent pipelines, Ab Initio 
pipelines, you name it. Data pipelines have always existed. But what has changed and what 
Streamsets has brought to the market is this notion of smart data pipelines. The key difference 
between data pipelines and smart data pipelines is that smart data pipelines operate with intent-
oriented information. 


So let me take a moment to describe what that means. When you're moving data, and that's 
what a data pipeline does, it moves data from point A to point B, you have a choice. You can 
either build a design time pipeline, where you know exactly what the definition of A is, what the 
definition of that data is, what format it is, and what is its schema? What are its variances? What 
are its deviations? You know everything about that data source A, and you're moving it to data 
destination B. And you know that extremely well as well. You know what format it'll go in. You 
know what schema it will have. You know what fidelity it should have, and so on and so forth. So 
you create a design. You create a design, a mapping if you will, between A and B, and that 
becomes your data pipeline. Problem with this data pipeline is that if anything changes either on 
the source or the destination, or in the data itself, you now need to go back and reinvest that 
design time in order to get to that point of value where the mapping can be functional again. So 
that's one extreme. 


The other extreme is what we call the opaque pipelines. Opaque pipelines are bytes in, bytes 
out. The pipeline does not care whether you're giving it good data or bad data. So Flume 
pipelines, for example, are opaque payload pipelines. Kafka pipelines are opaque payload 
pipelines, right? There's an interesting phenomena about people vacillate between one of these 
two types. So when you're working with Kafka, for example, some people will turn on Kafka 
schema registry. Guess what happens when you turn on the schema registry? It immediately 
makes it a completely design time pipeline. 


So the problem with the opaque pipelines is that if there is a problem with the data or something 
changes in the source system, now all the consumers of that pipeline will have to deal with it 
independently. So you're kind of reinventing the wheel 17 times. You don't really know that that 
one problem can affect so many of your downstream consumers. The way this impacts the 
enterprises is even more subtle than that, because it's not very often that things are breaking in 
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a really, really bad manner. More generally speaking, these are minor deviations that cause a rift 
in the very business concepts that this infrastructure is trying to support. 


So, for example, a data dictionary, the definition of what a customer means to enterprise could 
be interpreted five different ways by five different downstream applications. And before you 
know it, you have a huge master data management problem downstream in the enterprise that 
has now taken roots. There is no easy way to back it up. So those kinds of problems are very 
much amplified in this modern world where the changes, the drift in the data is so persistent, it's 
so constant. So smart data pipelines actually find that middle ground where they say, “You can 
design a pipeline without knowing the full details of what the sources are or what the 
destinations are. But what you feed into the pipeline, the design of the pipeline, operates on the 
principle of intent. 


So a very simple example is if I'm moving data that is sitting in S3 over to a table in my cloud 
warehouse, and all I'm required to do is to map a certain subset of attributes that are coming in 
from my S3, my object store dataset, then as long as those attributes exist in the data, the 
pipelines will continue to work. The source information can come up with more attributes. It can 
drop existing attributes, which are not part of the 17 things that you need, and pipelines will 
continue to work. There is no change in the design of the pipeline. There is no change in the 
implementation of the pipelines. The pipelines will continue to work. Of course, they will flag that 
something has changed. But based on the pipeline's smart nature, it knows that it has zero 
impact on the downstream applications. And it knows when one of those 17 things change, even 
in as slight and subtle a thing as just the precision of the number, the pipelines can flag it and 
identify that, “Hey, there is a downstream impact. A human intervention is necessary.” So that's 
the product. That’s the core idea that powers our DataOps platform, this notion of smart data 
pipelines. That's what we brought to market.


[00:12:11] JM: Can you get a little lower level? If I'm thinking about a data pipeline as having a 
number of different components, it's got some disparate data sources, files on S3, databases. 
And then you've got Spark jobs you need to run. You've got some sort of orchestration system. 
Can you give me a little more detail about what are the typical open source pieces or database 
pieces that fit into like a typical Streamsets customer?
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[00:12:41] AP: Okay. So to answer that question, let me begin at a high-level, and I can go 
down – Interrupt and tell me if I'm going too shallow or too deep. We can tune it that way. So the 
highest level any data infrastructure, any data in motion infrastructure, has two independent 
planes or two independent dimensions. There is a control plane and then there's a data plane. 
Data plane is where data lives and moves. Control plane is what orchestrates and engages the 
data plane components to actually move the data. 


Now, the questions of framing that you offer just now Jeff is very pertinent to the data plane, the 
sources, the destinations, the database technologies, the open source software, the 
orchestration engines and so on and so forth. These are all the moving parts mostly within the 
data plane system. And the data plane system itself has a deep concept of locality. This idea of 
where exactly the data is. So, for example, if the data is sitting on microkernel devices on IoT 
devices, it requires a different set of engines to operate to access the data. If the data is sitting 
on third-party systems, on object stores, which are not part of a managed cluster, it requires a 
different set of data plane engines. If it is sitting on clustered system, on distributed file systems, 
on aspects, on object stores that have access to clustered resources, it yet again requires like a 
Spark-like environment, a Yarn environment, where you can actually spin up the cluster and 
process it along the way. 


So, broadly speaking, the data plane itself, as I said, is now divided into your edge devices, your 
IoT kind of platforms, your edge platforms outside of the cluster, the non-cluster resources if you 
will, and then on the clustered resources. And each one of these require a different handling 
engine in order for it to be able to make improvements or process it. 


Now, within each one of these segments, the kind of sources and destinations you can work 
with vary by sources and destinations. I mean, the actual physical representation of the sources 
and destinations So, to give an example, if you're trying to get data out of an HTTP endpoint, a 
service endpoint, if you will, and move that data into a database, the physical manifestation of 
that service endpoint will dictate a significant amount of how your pipeline would work. Does it 
give you a single part access? A single invocation access to the payload that it's trying to send? 
Does it have multi part mime support? Does it use pagination? Is there a higher order 
application protocol that signals the end of a request? So you can go very, very deep into how 
specifically that HTTP endpoint works. It's not sufficient to say this is a REST endpoint, and it'll 
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magically work. Because every use case, every enterprise, every integration, every system-to-
system communication is different. 


So where a smart data pipeline makes it so much more easier for the data engineers is it 
abstracts away a whole bunch of those lower level details. So what you see when you build 
these pipelines, regardless of what component, what bucket of data infrastructure it's going to 
work on, whether it's telling the edge device, in the IoT devices, whether it's on off-cluster or on-
cluster, what you see is a canvas, and that canvas allows you to pop-in, mix and match your 
sources and destinations. And you draw arrows and you drop in boxes or stages in between 
them that allow you to modify, transform the data. 


Now, if you're transforming data that is coming from non-clustered resources going into some 
other destination, you're obviously operating row-by-row, batch-by-batch. Modifying your ability 
to transform is limited to what can be done on a streaming pipeline. Whereas if you're on a 
clustered resource, whether it's a streaming cluster or a batch cluster, it doesn't really matter, 
your abilities are far more different. They're far more sophisticated. And they're more attuned to 
clustered resources. We often make the mistake, generally speaking, of saying that, “Hey, is 
clustered pipelines better? Are non-clustered pipelines better?” And the answer is they both 
serve different purposes. So they're useful for different use cases. And each one of them will 
operate very, very poorly if they're subjected to a wrong use case. 


So clustered pipelines, for example, are great when you have pushdown compute that deals 
with large volumes of data. You can do joins. You can do heavy lifting transformations and so on 
and so forth. But they absolutely break down and become extremely expensive and bad for the 
purpose if you're trying to access physically tie down resources outside of the cluster. And the 
moment you do that, now, anybody could tell you that, “Look, you lost the value of running a 
cluster workload.” So at that level, the pipeline's themselves are able to translate, whether it's a 
Spark application, or whether it's a standalone engine, or whether it's a microkernel engine, 
right? The pipeline's themselves can be pushed down to those three separate domains of the 
data plane. 


If you step back from that, all of these pipelines that are moving data from one point to another 
or multiple different points to multiple different points often can be mapped together into a single 
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topology that is then supporting a business process at the highest level. So what we do see at 
the control plane level is the orchestration of multiple of these pipelines that together then form 
the basis for you, your corporate IT, or your platform engineering teams, to then devise SLAs 
that can be applied end-to-end for large complicated workloads that have multiple pipelines, 
multiple hops, spanning into those systems.


[00:18:56] JM: Could you take me through a specific prototypical use case, or maybe a 
customer case study that stood out to you that will really illustrate what a typical application 
looks like?


[00:19:09] AP: Yeah. So we have the highest level few significant use cases that we see 
applied over and over again by some of our customers. One common one is hydrating data 
lakes. Data lakes are this concept that you have large volumes of data kind of organized loosely 
on top of a local storage that is then accessible to various component technologies and 
compute engines that can be layered to do analytics and higher order sort of value extraction 
processes. So hydrating data lakes requires you to move data not just from on-premises data 
sources, from like systems like databases, but also from systems that the enterprise may 
already be engaged, which a third-party systems like Salesforce, like Omniture and other sort of 
“HTTP endpoints”. 


So a prototypical use case would be hydrating a data layer that takes information coming in 
from some applications taking Kafka topics and moving them into the distributed store, the 
object store, the local storage, as I said. Or taking CDC feeds, chain data capture feeds from 
their on-premises databases or VPC databases, and then driving those into the data lake for 
further curation and processing. That would be one. 


Cybersecurity is another. I would say cybersecurity, technically, if you take a closer look, is really 
a specialized form of data lake use case. It has the same problems as a normal data lake use 
case has, although it is far more specialized, and it has a time sensitivity to it. So it requires 
really high-grade of instrumentation and oversight so that you're not missing any key events that 
you should be getting in time to process and the assets that you find defend through 
cybersecurity initiatives. 
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CDC itself is a very important use case for us. A large number of applications that enterprises 
are building these days are downstream from various systems of record, whether they are 
relational or not, but they downstream the systems of record that operate directly on change 
data capture, because that's how they infer the state changes for the user-facing applications 
and then able to create events and process them in a manner that helps the business drive 
whatever the business processes these systems are supporting forward. So those would be 
data lakes, cybersecurity, CDC. Those would be the higher order use cases that come to mind.


[00:21:43] JM: So the change data capture use case, that's like, “I've got a Postgres database, 
and I'm telling the changed data feed,” or whatever it's called, “off of my Postgres database.” 
And I'm like triggering stuff based off of that?


[00:21:56] AP: Yes. I would say it depends upon what your downstream applications are. If you 
have only one downstream application, what you described here perfectly makes sense. More 
typically, what we see is the change data capture feeds actually do get democratized using like 
a broker or a messaging system like Kafka, that then gets propagated and used by multiple 
downstream consumers. That information in the lowest form of fidelity, or I'm sorry, in the 
highest form of fidelity can be used to recreate the databases state itself. 


So if you think about somebody moving an on-premises database system in a manner that they 
want to replicate it to another database system, which is not the same identical vendor version, 
etc., they need a little bit of high-fidelity feed so that they can go create, run the same DDLs and 
the DMLs that are happening in the source system to recreate the state of the database. This 
problem becomes really tricky if you're going from traditional database system to a non-
traditional database systems such that you're going from an on-premises, MySQL, and to not 
into an RDS, Aurora, MySQL, but you're going into, say, Redshift. Are you going into a hive 
installation that you're managing on a cloud property? 


So the CDC workloads that we have support pretty much all of that heterogeneous integration 
between endpoints and applications, because we carry enough metadata that we can apply 
your CDC feed, which is typically used for replication purposes to much more sophisticated use 
cases where you can have an Oracle replicating into MySQL.  You have a Mongo replicating 
into an Elastic. They all fall into the same category for us. I deviated from your question though.
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[00:23:54] JM: No. No. That's fine. That's fine. I mean, in the change data capture, are they 
typically like throwing data on to Kafka as middleware? Or what are they doing with that change 
data that's coming raw off of Postgres?


[00:24:09] AP: Yeah, so we do see Kafka. We do see object stores. We do see Kinesis, Event 
Hubs, etc. Like brokers are prevalent. I would say nearly 60% of the cases, I would say there's 
some form of a distribution mechanism, whether it is a streaming distribution mechanism, like a 
message broker like Kafka or Kinesis, etc., or whether it's an object store that people are 
indexing  that the downstream applications or directly accessing. That happens. I would say 
40% of the use cases, there is an end-to-end connection. So you have the same pipeline 
depositing that feed into multiple destinations simultaneously. Those typically happen to be 
more time sensitive use cases.


[00:24:52] JM: Okay. If we think about the domain of data pipelines, again, Streamsets was 
started in 2014. I believe that Airflow came out in 2015, or maybe 2016. My understanding of 
Airflow is like, basically, it came out in in a world where everybody wanted something like 
airflow. And Airflow came out and it provided you sort of a scaffolding to put your data pipelines 
on and orchestrate your data pipelines. But it's been a great solution that lots of people have 
used, but it hasn't been as good as everybody's wanted. And now you have the rise of some 
newer data pipeline orchestrators, like Dagster, and Prefect, and some other ones. But I'd love 
to get your perspective on the open source data pipeline infrastructure space and how that 
compared to what you built out of Streamsets. Like when you look at the open source 
ecosystem, are they tackling the same problems as Streamsets was tackling or Streamsets is 
tackling? How does the open source data pipeline space compared to what you're working on?


[00:25:56] AP: So, I've been working with open source for a significant number of years, more 
than I would care to admit online. But the open source ethos, the ideas that power that 
innovation, are very relevant and very useful. Without open source, we wouldn't have like the 
Linux platform, for example. It's by far one of the most impactful platforms out there. But we 
know that Linux is open source. We can actually roll up our own distribution of Linux. We can 
get the Slackware kernel. We can piece together things from open source, like from some 
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different repositories and so on so forth, and actually build out a platform and actually deploy it 
and use it. Nobody does that. And the reason why is because there are too many moving parts. 


Open source is actually great for giving you those moving parts. And it's fantastic. Like Airflow is 
a great thing. And open source projects have their own set of “attach and detach cycles”. New 
technologies are constantly pushing for things that open source was not able to solve for the 
previous generation projects would not solve for. I don't necessarily look at that as an inherent 
sort of invalidation of what the previous technologies were doing. And I look at it as 
complementing use cases that emerge over a period of time. That doesn't mean that Airflow 
does not have a place. Airflow, in fact, is very, very useful. And so is Dagster. I would say they 
are two sides of the same coin. Enterprises are trying to solve for high-order problems, and 
these systems are very low-level, right? So there is the pain right there and then. 


Now, one pain is assembling the Linux distribution for yourself. The other pain is in operating it. 
Assembling itself is a very intensive exercise. If you build a solution on open source, you take 
charge of all the moving parts, and you say, “I'm going to place them together in such a 
schematic that it’ll help me create the solution that I'm envisioning,” right? And you'll get to that 
point, that's fantastic. If that is low enough, an abstraction that's closer to the reality of the 
moving parts, then you're good to go. Chances are you don't need a vendor-supported solution. 
But if you're going really high-level, then you would be hit by the second order pain, which is 
when you put these things in production, things break. Things break not because they're bugs, 
because you didn't quite anticipate all the boundary conditions. You didn't quite anticipate all the 
changes. 


This was in fact, the first realization that I had before starting Streamsets, because in my past 
life, I was working at Cloudera, where I interacted with many, many accounts. And one pattern 
that I saw consistently was that POCs would go great. If I want to create a report running off of a 
high warehouse, I can actually show that in really, really fast manner. And give me the data and 
I'll show you the reports and all the SQL queries that are necessary, the HQL queries that are 
necessary. The problem becomes when you actually go to production with that idea, the 
pipeline's that are feeding into that system are not sensitive to changes. So when your ipv4 
changes into ipv6, your regular expressions do not automatically update themselves. Somebody 
has to go figure it out. 
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When the host header in the syslog message goes from all capital HOSD to capital H and small 
osd, there's a butterfly effect that changes the behavior of personalization of applications that 
being served out of the data center. These are the things which are very real today. And I feel 
like if you're operating at the ground level, open source is your best friend, because you have all 
the tools, you have all the knobs, all the dials, but you need to be close enough to the problem 
to understand in how to solve it. The higher order you go, if you don't want it to be your pain and 
your problem to figure out all the 70,000 moving parts that are going to support a migration to 
cloud, for example, which seems to be another use case that has emerged over the course of 
last year and a half as a very consistent driver for cloud adoption, if you want to operate at that 
level, doing open source will leave you kind of partially blind is what I would say, because you 
cannot anticipate fully in your current capacity at that level to see what are things that can go 
wrong. That's where you need a higher order abstraction like Streamsets.


[00:30:26] JM: The problems that Airflow was going after, are those the same kinds of problems 
that when you were going to market with Streamsets in 2014 that you were trying to address 
with customers? Am I right in that this is like a very similar problem space to what you were 
going after?


[00:30:44] AP: So we have a little bit nuanced viewpoint, and I'll try to explain. What Airflow 
solves is self-service for data pipelines, orchestrated pipelines, workflows. You could argue that 
something similar can be solved with, for example, Informatica and Talend. These are these are 
incumbents that have created mappings and infrastructure for moving data. You can do that. 
Why was Airflow preferable to Informatica and Talend? Because airflow is lightweight, it's open 
source, you can roll your own. You can you can get it to production really, really quickly. Can you 
operate Airflow at scale? No, you can, without sufficient scaffolding monitoring stack that you 
build out. Can you implement SLAs? Can you implement auditing, security, multifactor 
authentication, SAML integration? Can you do all of that? Yes, you can, if you're a developer 
and you are in love that technology, you can extend it. So there are lots of these things that 
surround it, which Informatica would provide out the box. 


The problem with Informatica although is it's so hard to start with.  You need an upfront 
investment of significant development resources, because, arguably so, it's a heavyweight 
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platform. It's a full blown platform that you need to educate yourself and work with. Airflow, you 
can get up to speed in maybe less than an hour for most people, I would say, may not be at sort 
of the topnotch super power user level, but good enough to get started. 


If you think about it, there's the enterprise grade nature of the solutions, and there is the 
frictionless nature of these solution. So I would say Airflow is more towards the frictionless, kind 
of roll your own self-service, get it going. Enterprise-grade, you have the incumbents, 
technologies like Informatica. What we solve for is bringing enterprise-grade nature to 
frictionless motion. That's where we're trying to come in, where we're saying that, “Look, you 
need productivity boost like Airflow can provide even more. You don't really need to roll your 
own security and authentication and auditing and all of that. We will give it to you in a very 
highly productive frictionless manner. But we want to do it in a manner that you can go 
production at scale. You can run your data centers on it. You can run hundreds and thousands 
and millions.” In fact, we have customers who run upwards of 5 million pipelines a day. And 
that's no small feat by any means. And then these are not shops with hundreds and thousands 
of data engineers. In fact, that project that I'm referring to was started out by six people, and 
they got it up to 1.2 million pipelines a day. And since then, it has taken on by itself. So that's the 
idea of bringing that frictionless to the enterprise-grade. That's where Streamsets fits in.


[00:33:32] JM: So that makes sense. I can very much imagine that being a really good starting 
point, especially in 2014, where people had enterprises –And enterprises still have today these 
kinds of problems. But back in 2014, it was really acute, and there was not widespread 
understanding of how to deal with this even if you wanted to roll your own. There wasn't really 
great guidance on that. It sounds like Streamsets was able to build a really strong go-to-market 
strategy around catering to that pre-Airflow, even in the midst of Airflow, fully managed data 
infrastructure data pipeline landscape. Now, how has that starting point, informed the products 
that you've built since the first product?


[00:34:22] AP: The way I would begin responding to that question, Jeff, is I don't think our 
fundamental platform definitions have changed over the years. We've been in business for 
seven years now. We're going to be seven years old very soon this month. The core ideas and 
the core thesis has not changed, has not shifted. If anything, we have now stronger proof points 
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and a bigger result that this is really the problem we need to solve for. And we want other 
vendors to catch up and do things similar to how we're doing. 


What has changed though is the shift towards the cloud. What has changed is in 2014, when we 
started, there a significantly more emphasis on on-premises solutions and on-premises data 
lakes and data infrastructures. We're seeing that wither away. We're seeing all of that consumed 
by cloud offerings and cloud services and so on so forth. That does not mean that the workloads 
and the kind of processing needs that enterprises have have changed. What it means is they're 
doing the same thing, but in a much more different sort of in a cloud-centric manner than ever 
before. 


And there is an interesting side effect of that motion. That interesting side effect is that if you go 
back and look at what the enterprise infrastructures were built on in the 90s, in the 80s, in the 
90s, they were appliances. They were these big refrigerator-like systems that would be plugged 
into a special sort of facility which had HVAC requirements and electrical requirements, and so 
on and so forth. The majority of the spend in those days was for the hardware that was 
optimized to run a specific software, which manage your data. That gave way to the early cloud, 
which was the virtualization of hardware completely. And when the virtualization of hardware 
happened, that meant from a capital expense to an operational expense. And in the process, 
the emphasis on the enterprise side shifted from buying hardware to buying software. And what 
we're seeing now is a further shift in the same direction, but applied to software. Software itself 
has gone from a capital expense to virtualized services that are being available. 


So when I need to run a cluster, I actually run it using EMR, for example, or data proc. And I can 
spin up as big a cluster as I want. This is not necessarily just the hardware business. It’s not just 
the EC2 instances on which it's going to run. This is actually the specific version of Spark or the 
specific version of another computer infrastructure that is certified and supported by the vendor. 
This motion is what has accelerated over the course of last seven years, and especially in the 
last two years, where there has been lesser and lesser emphasis on building out on on-
premises environment and moving more towards the cloud. And we're seeing it at top-tier 
enterprises. We're seeing it in banks. We're seeing it in healthcare, security industries. So this is 
very, very real. Our products over the course of last seven years have evolved. And in fact, I 

© 2021 Software Engineering Daily 14



SED 1281 Transcript

would say in the last year and a half have accelerated towards that cohesive cloud-first 
experience. So that's how we're evolving this market.


[00:37:42] JM: I want your macro perspective on data infrastructure. So one of the things that 
really surprised me over the last six years, when I started doing this podcast in, I think, 2015, I 
did a lot of coverage of these systems like Spark, and Flink, and Storm, all these kind of data 
streaming orchestration systems. And I think a lot of people assumed that the future of data 
infrastructure was going to be the you were going to have these kind of real-time processing 
systems doing a lot of work over time. And for a time, that was what happened. I think a lot of 
people are still using Flink and Beam and stuff. But my sense is that, for a lot of data 
infrastructure, the solution has actually become centered around the data warehouse, where 
you basically just throw all your data in the data warehouse, and then you do things on top of 
that. And in order to enrich the data warehouse experience, you do things with Kafka, and you 
do things with like Lambda functions, and you just trigger stuff. But a lot of the action just 
happens in data warehouse. Then you do like reverse ETL out of the data warehouse to do 
other stuff using Fivetran, or something, or Census, or whatever. That to me was a surprise. So 
I'd love to know your perspective on modern data infrastructure. And what has surprised you in 
the last seven years?


[00:39:03] AP: So what you described in terms of what has surprised you, Jeff, is I would say 
accurate. Nobody was talking about how important warehouses would be back in 2014. Yes, we 
always looked at enterprise data warehouses as part and parcel of enterprise data 
infrastructure, but with the shift towards the cloud and going forward with larger decentralized 
workloads that most enterprises are trying to orchestrate, it wasn't very clear whether the 
enterprise data warehouses will play the same role. 


Now, we use the term warehouses still. We use the term data platform still kind of using them in 
the same concept with the same set of ideas as we used them before, like when talking about 
Teradata, for example, or Netezza, or Oracle, for example. But I think it's worthwhile pointing out 
that the underlying foundations of the system has changed. Today's enterprises have way more 
data under direct user management that has ever been the case before. Way more than ever 
before is the data sitting on object stores and distributed file systems and so on and so forth. 
And this data, not entirely all of it is cold in cold storage. In fact, the data lifecycle and the data 
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management concepts are slowly evolving to catch up with this new reality of direct under 
management data. 


So, while most of this evolution of warehouses, lakes, lake houses, name the abstraction that 
suits your model the best. While all of that has been very, very, you know, front and center in the 
evolution of data infrastructures, the real challenges that enterprises are dealing with, in my 
opinion, are what do you do? How do you redefine your data lifecycle? How do you manage 
your compliance workloads? How do you manage auditability across significantly replicated 
over and over, because it's so easy to store more data now and so cheap to store more data? 
There is almost a dysfunction of sorts in the enterprise where whatever you need you get. But 
then once your need is done, is addressed, you don't really know what to do with it. So there's 
this proliferation of management challenges around data that I feel, in my opinion, is where the 
world is headed towards, or that's going to come to head. Data is very valuable, but there is also 
liability. You need to treat data with respect in order to be able to get fast your own obligations 
and your own needs. 


We've seen the evolution of like privacy requirements from a whole bunch of European 
commissions, and as well as in California, for example, that puts stringent controls and requires 
the enterprises to deal with these things in a very meaningful manner. But you can't really do 
that if your data is actually being shared across seven services, many of which are not under 
your control. How do you ensure all that comes together? So the part that I anticipate happening 
is clarity on what is the new way of lifecycle managing the data in this new environment of 
complex data supply chains, and technologies that will evolve to support those workloads in a 
manner that can be done at scale without requiring a corresponding scaling out of the human 
side or the manpower associated with managing the lifecycle of data. In other words, what I'm 
trying to say is the smart data pipeline that I see, as very relevant to embracing this diversity 
and heterogeneous environment complex data supply chain, will become more relevant in 
managing the entire data lifecycle over the coming years. I sure hope Streamsets plays a very 
important role. But I also know that we are not the be-all and end-all. There will be a whole slew 
of new technologies that will deal with master data management problem in a different way than 
it has been done before, that will deal with data dictionary and reconciliation and cataloguing in 
a different way that has been done before. Those things, I think the time is ripe, and in the next 
few years, two to three years, we will start seeing a lot of those innovations come to the market.
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[00:43:19] JM: As a case study, why was Snowflake so successful? Why has Snowflake been 
so successful? Snowflake I think was another thing that surprised people. I mean, I guess the 
data warehouse categories surprised people, and Snowflake was the winner of the data 
warehouse category. What explains the rise of that company?


[00:43:38] AP: My humble opinion here is their relentless focus, their perseverance, and their 
commitment towards the cloud was a key differentiated aspect long before anybody else was 
beating those drums. And they kept on it. They kept to it. And over the course of the last 
decade, they've actually solved for the very compute challenges, cost challenges, that most of 
the newcomers in that landscape deal with. So they definitely were ahead of their times. And 
kudos to their vision and execution.


[00:44:10] JM: Yeah, I mean, they basically figured out that this category – Not only was the 
category important, but it has so much technical depth, that basically you can throw as many 
engineers as you want at it, and it's never going to stop being hard. You're never going to solve 
it fully. It's too hard. Are you a believer in this unified data lake data warehouse idea?


[00:44:37] AP: It depends upon how you define unified. And I know every vendor has a take on 
this. My point of view is if you take the vendors out of the equation, then the modern data 
infrastructure is highly heterogeneous. It has aspects of, strict, highly consistent ACID stores. It 
has aspects of object stores. It has aspects of distributed file systems and elastic storage and 
so on so forth. All those things serve a place. They serve a particular purpose. And they have a 
place in this modern infrastructure. Now, all of them are owned by one vendor. You say it's 
unified. If it is part and parcel done on one cloud provider, a little bit one data platform, a little bit 
– I don't see a problem with that either, as long as the tooling and infrastructure is sufficiently 
sophisticated to manage those diversities. 


I think the cost equation, it's a little bit of the same play over again, but in a very different 
manner than what we saw in the 2000s when you would say like, “Okay, a typical enterprise 
only needs one ERP system, and one people management system, and one general analytics 
warehousing system.” And that's it. And you have these three things, and everything is done. 
And you can focus all your investments around that. Maybe we'll settle in into an equilibrium of 
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that nature, with the key technologies that are existing today in the market, the cloud providers 
and the data platforms. But I'm also aware that each one of these platforms, each one of these 
vendors, is doing their best to not just serve the use cases that they serve the best, but also 
expand and income pass the adjacencies around them in order to be the one stop shop for the 
one enterprise. And then some good succeed. It's hard to delve from my perspective.


[00:46:30] JM: All right. Well, as we wind down, tell me about – Actually, I want to know the 
toughest technical challenge that you have encountered in the last seven years while building 
Streamsets.


[00:46:41] AP: Oh, boy. Toughest technical challenge. I will probably disappoint you with my 
answer, Jeff, but apologies for that. Technical challenges are not generally tough. It's the people 
challenges associated with the patterns and value recognition. This is what I struggle with the 
most. So, for example, when we started Streamsets, the corethesis, the core idea was this 
notion of data drift. I still believe it is as applicable. If anything, we talk about data ops as a new 
discipline. But if you really look at data ops, data ops is all about using smart pipelines to 
empower your organization to keep operating on a stable abstraction and stable foundation, 
which completely takes care of sort of the very fluid nature of the data supply chain underneath, 
right? 


What it's trying to do really is trying to show how to deal with data drift at a mega scale, right? 
So I'm very much invested. Streamsset is very much invested in solving that problem every 
single day. And we have the tools, we have the technologies, we have the algorithms, we have 
the infrastructures and the engines to solve for that. But the people that resonate with that 
problem are the people who have been burned by that problem. I found it extremely hard to 
educate people who are not yet there. Look, this is coming towards you like a speeding train. 
You better tool up your infrastructure – And you don't have to use Streamsets. I mean, I don't 
get me wrong. This is not a shameless plug for Sstreamsets. It's the plug for the idea. What do 
you need to solve for? You need to solve for constant change. You cannot afford. Not every 
company is a Facebook that can have 500 people data engineering team solving for every 
single log injection problem. They can't do that. It's not scalable. Well, nobody is Google that 
can actually have a research wing trying to log down using machine learning to correct human 
errors, right? Google does that. We can’t do that. You can’t do that. Most companies can't. 
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So for us to succeed, for the broader world, for the non-Facebook's and the non-Google's to 
succeed, it's really important that we be mindful of what are our true challenges, and the true 
challenges are to deal with this constant drift of data, new schemas, and structures, and 
infrastructures in a manner that you can actually take full advantage of the technologies that are 
at your disposal today. For me, just this idea of helping a product owner appreciate how deep 
this is has been way more challenging than solving for it. So yeah, like I said, it’s probably not 
the answer you were looking for. But –


[00:49:25] JM: No. I think it's a good answer. It's honest. Cool. Well, Arvind, thank you so much 
for coming on the show. It's been a pleasure talking to you. 


[00:49:31] AP: Thank you, Jeff. Appreciate it. The pleasure is all mine.


[END]
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