
SED 1280 Transcript

EPISODE 1280


[INTRODUCTION]


[00:00:00] JM: Delivering SaaS products involves a lot more than just building the product. 
SaaS management involves customer relationship management, licensing, renewals, software 
visibility and the general management of a technology portfolio. The company, Blissfully, helps 
businesses manage their SaaS products from within a complete IT platform with organization, 
automation and security built in. The Blissfully platform offers a system of record for creating 
and maintaining a single source of truth for technology, as well as a workflows and automations 
feature for defining and executing consistent IT processes and an IT collaboration feature, as 
well as security and compliance. These features come together to form a comprehensive IT 
management platform. If that still sounds confusing, then it will be explained soon. 


In this episode, we talked with Aaron White, who is a founder and CTO at Blissfully. Aaron was 
previously a cofounder and board member at Price Intelligently, and worked at Venrock before 
that. I hope you enjoy today's episode. 


A few announcements before we get started. One, if you like Clubhouse, subscribe to the Club 
for Software Daily on Clubhouse. It's just Software Daily. And we'll be doing some interesting 
Clubhouse sessions within the next few weeks. And two, if you're looking for a job, we are hiring 
a variety of roles. We're looking for a social media manager. We're looking for a graphic 
designer. And we're looking for writers. If you are interested in contributing content to Software 
Engineering Daily, or even if you're a podcaster, and you're curious about how to get involved, 
we are looking for people with interesting backgrounds who can contribute to Software 
Engineering Daily. Again, mostly we're looking for social media help and design help. But if 
you're a writer or a podcaster, we'd also love to hear from you. You can send me an email with 
your resume, jeff@softwareengineeringdaily.com. That's jeff@softwareengineeringdaily.com.


[INTERVIEW]


[00:02:03] JM: Aaron, welcome to the show.


© 2021 Software Engineering Daily 1

mailto:jeff@softwareengineeringdaily.com


SED 1280 Transcript

[00:02:05] AW: Hey, thanks for having me. I'd like this show to be much in the direction of a 
case study. So I think what your company is doing is quite interesting. But I'm also intrigued by 
your perspectives on how to build infrastructure these days. So given that we're going to be 
thinking of this as sort of a case study, let's start with what you actually do you run 
blissfully.com. Explain what blissfully does.


[00:02:32] AW: Sure. So Blissfully is a SaaS management platform. And what we do is we help 
IT teams figure out all the different pieces of technology in use throughout the organization, 
which apps people are using, what you're spending money on, what you're not using, but 
spending money on, who has access to what? And we create a unified system of record of all 
those technical relationships. And from there, that context informs just about everything IT 
operations might need. So whether you're hiring a new employee and trying to figure out how to 
rapidly get them into all the tools that their teams might imply, or if somebody's leaving and you 
need reverse access to any number of apps, or you're doing a security audit, or compliance 
process, or even just cleaning up your spend, we help IT teams figure all that out.


[00:03:16] JM: Can you give an example of the onboarding process and the day-to-day usage 
just so people have a better sense of what Blissfully does?

 

[00:03:25] AW: Sure. Yeah. So in terms of day-to-day usage, I think the first thing is just how 
would you set up a tool like ours. We integrate to all of your different back office systems. So 
GSuite, Microsoft 365, Okta, OneLogin, you name it. We plug into it. We pull the data in to 
create that system of record. And then from there, you can use this to answer any questions you 
might have. But if we're talking about employee onboarding, for instance, let's say you're 
bringing a new engineer into an organization, right? So they're going to be part of the all 
employees team. They'll be part of engineering. Maybe they're part of the SF office, or maybe 
they’re a remote worker. You would select those things in our tool. We would figure out all the 
various applications those relationships would imply. And then we would spin up a unified 
workflow that combines the things that humans need to do to get that person up to speed, 
things that new hire needs to do themselves, as well as things that automations can get done 
for you into one spot, and then follow up with everything until it gets done. So whether that’s 
provisioning people into GitHub, Figma, Slack, Zoom, all these different apps, we can track the 
progress of all those and make sure that the person is deployed successfully.


© 2021 Software Engineering Daily 2



SED 1280 Transcript

[00:04:35] JM: Like let's take the example of onboarding somebody and giving them the 
permissions into Figma. Does Figma give you all like the API hooks and stuff that you need to 
understand the user's progress along the way of being a being listed as an enterprise member? 
Or do you have to like reverse engineer some of that?


[00:04:58] AW: Oh, man. Yeah, this is a fascinating question. In fact, interestingly, to your 
example at Figma, I was just looking at this this morning. It is really complicated. And I think just 
a backup before we answer Figma specifically, the reason SaaS management platforms exist is 
because the number of tools that organizations use has just exploded over the last the last 
several years, certainly the last decade, and you're in a world where everybody in the org can 
kind of pick and choose what they want to use and bring that into the team, whether or not IT is 
even aware of it. So it's just very complicated in terms of service area. And then even as you get 
into per application concerns, like we're talking about with Figma here, it's extremely 
complicated. 


So, actually, Figma, they support provisioning users via SCIM, which is a standard enterprise 
protocol for creating users. It typically works behind an identity provider like Okta, or OneLogin. 
And when you create a user in Okta or OneLogin, you can have that synchronized and create a 
user in Figma. Interestingly enough, even when you have that setup for Figma, it doesn't 
necessarily mean that the user gets the right permissions. Someone still has to go in manually 
afterwards and make sure that that user is set up correctly to the various teams, boards, and 
have the set roles that they need. 


So part of our value proposition is we will automate what we can, but I think people would be 
shocked by how little is truly automatable. But the real value we have is that since we can track 
all the various app admins or app owners and kind of coordinate and orchestrate the more 
human element across all this, because a standard organization probably is using hundreds of 
apps, and you can only automate so many of them. And so you still have a lot of work to 
coordinate beyond that. So it's a mess, for sure. And that's one of the reasons that our platform 
exists, because you just really have to keep kind of constant tabs on what's really happening 
inside of your org from a technical perspective. You can steer me here a little bit, because I'm 
certainly happy to talk at depth. But it does get very complicated very quickly. On and off-

© 2021 Software Engineering Daily 3



SED 1280 Transcript

boarding is just one thing that we help folks with that. But, really, it's making sure that they have 
one system to understand what all the apps are, what the relationships are, which ones are 
currently automated, which ones are going to be automated, which ones can't be automated, 
but who's responsible for them as an individual? It's a lot for an organization to deal with.


[00:07:22] JM: Yeah. And I think we'll dance around this subject matter. I'd love to know a little 
bit about the MVP for Blissfully when you when you originally went to market, because we're 
talking here about this platform that helps you with onboarding, and off-boarding, and user 
management of all these different third-party applications. That's a tall order for an initial 
product. So can you tell me what the initial product was when you felt comfortable going to 
market? And then we can talk maybe about the architecture of that first product.


[00:07:59] AW: Sure. I'd be happy to. First product – Actually, when my cofounder and I got 
started, originally, we were going to be an MSP, a managed service provider. So we would offer 
our expertise in setting up technical systems to make sure that organizations were running 
efficiently and getting the most leverage. And what we found was when we were trying to sell 
those services, either to customers we had just won because they believed our vision, or when 
we were trying to articulate what we would do for prospects. We ran into the same problem over 
and over, which is if you're going to tell someone you're going to help them with their 
technology, you have to know what their technology is. And so we'd ask our customers, potential 
customers, “What is it you're using? What are your employees using?” And, universally, the 
answer was, “We're not really sure.” Which is kind of shocking to hear, right? Like, “We're not 
really sure.” “What do you mean you're not sure? Of course, you need to know what software 
makes up your organization. How do you have continuity? How do you know your spending? 
And how do you manage security?” 


So the very first version of the product was designed to answer those questions to tell you what 
you were using so that we could provide you better service. And so the very initial MVP was a 
Google marketplace application, which still exists today actually, although it's much more 
sophisticated than was back then, that you would install, and in a couple of clicks would 
automatically start ferreting out several pieces of information. Who are the people in your 
organization? What apps have they ever signed into using Google OAuth or Google SAML? And 
we would even find invoice and receive emails from known SaaS vendors. And in about 60 

© 2021 Software Engineering Daily 4



SED 1280 Transcript

seconds, and you would watch this stream in on your screen, you will start seeing all the 
applications in use in your organization. Who is using them? What you are paying, when you 
last use them, or if the billing owner had left the company six months ago. We would surface all 
that for you. And so it ends up being this really impactful high value list of that technology and 
those relationships. 


What was interesting when we launched that MVP is that I got five friendly companies to install 
it, give me feedback. And then the next week it was another 10 installed it. And then the week 
after that, it was another 20. And so we just had really rapid growth, because it turned out most 
companies weren't really sure what their inventory of software was. And at that point, we 
realized, “You know what? Forget the services that we were going to provide. Really, we're a 
software company. This needs to be a product that the world has access to.” And so my co-
founder and I've doubled down on it. We raised a small pre seed round. We built a team, and 
we got to work building the real version of that software. 


But the MVP took us about two and a half months to build. It was just him and I coding it. He 
knows a little bit of Ruby and CSS, enough to be dangerous. So mostly it was me doing the 
backend coding. And the initial stack was using AWS Lambda, which was very new at the time. 
This is about four or five years ago, as well as GraphQL and Elm. And thankfully, those 
particular technical choices have withstood the test of time and the platform still based on them 
today, although our understanding of them has improved quite a bit. But it was a really fun 
experience doing what I like to refer to with my team is lightning bolting a solution up. The power 
of an MVP is you get to just strip down everything and focus on delivering value to your user as 
fast as possible both from a development timeline and from a product experience. And it really 
allows you to focus in such an incredible way. So that was a very fun time obviously.


[00:11:22] JM: The technology choices there are a little bit surprising, particularly Elm. Going 
all-in on Lambda makes make sense to me. Going all-in on TypeScript makes sense. But Elm is 
for people, who don't know, like a scarcely used functional frontend programming language. 
Why would you choose Elm?


[00:11:48] AW: Yeah, let's call it boutique. So I am – Well, we can get into my technical 
worldview. I'm predisposed to functional staticallytyped programming languages. I will talk at 

© 2021 Software Engineering Daily 5



SED 1280 Transcript

great length if anybody gives me the opportunity, and maybe you will, on why I have that 
preference. But boiling it down, what it does is by removing type errors from the runtime, by 
removing state management, you really just eliminate entire classes of errors from the 
possibility space. And so that means that the code you're writing is necessarily more correct at 
the other end, but more meaningful as you're writing it. You're not doing a lot of extraneous stuff 
to protect yourself against bizarre situations that it's hard to prepare for. 


For me, as a one person MVP author, I was trying to choose technologies that gave me the 
absolute most leverage. And here was something that could eliminate all these various 
problems upfront. I was going to lean all into that. And I found that it was actually highly efficient 
for me to produce an MVP application using Elm. Now, the question is, would that be the 
frontend technology choice for a company as we grew it over time? And that actually was less 
clear to me, right? So for an MVP, absolutely, it means that I'm not dealing with null reference 
exceptions, casting errors, undefined and properties not found, state management issues. All 
that was just gone, which is great. But are there enough developers that understand Elm in the 
ecosystem? Are there enough libraries that we can leverage or we have to be writing everything 
from scratch? At the MVP stage, that wasn't really a concern. Obviously, as we try to transition 
the code to a longer-lived actual stable project, that was a very real question. And I don't know 
that I went into it thinking that it wouldn't be answered one way or another. I think it has 
absolutely withstood the test of time for us. And we've been able to build a fantastically amazing 
team around it. But that was the calculus for the MVP. And it paid off then, and fortunately it's 
still paid off even after that. If you'd like, I can talk about why kind of the rubric behind some of 
these choices, right?


[00:14:08] JM: Please do. You mentioned real quick, you are an experienced entrepreneur. Like 
you built a number of companies. And so people listening who might think of this as a complete 
novelty choice, there must be some reasoning behind it.


[00:14:20] AW: Absolutely. Let me get into a little bit of my philosophy now. So I've worked on 
any number of startups. So one of the first five people at Runkeeper, helping move and scale 
them into the cloud. I made an animation startup way back in the day that got half a million kids 
using it. My cofounder and I – It’s actually our second company together before that. We 
launched an edtech company, venture-backed. I helped start a company called Price 

© 2021 Software Engineering Daily 6



SED 1280 Transcript

Intelligently, and actually wrote the first version of that product that's doing quite well and an 
independent company today. Blissfully, obviously. The couple of guiding philosophies that I have 
are, one, I mentioned lightning bolt, as fast as humanly possible to value at all costs. I can come 
back to that that's more of a development process and a mindset than anything else. Two is if 
you can eliminate entire classes of concerns from the things you do and let the machines do the 
things that humans would otherwise have to. You're taking a huge massive leap ahead. And, 
really, all technology is designed to give you that kind of leverage. 


So with Elm, imagine never having to reason about whether something is null or not. It's just not 
possible in Elm. The language is designed in such a way as to never have that be possible in 
the runtime. It's sort of provably guaranteed by the compiler. That's a huge win, right? You're 
spending zero time doing something to mitigate pure problems. And you can focus really on 
what you have to do. And I would make that claim of all typed programming languages, 
especially the highly statically-typed ones, over dynamic language throughout a type system, 
right? 


The difference between what you can express in a language with a type system versus 
something you can express in a language without a type system, you can make things that don't 
make sense in languages without type systems, right? Like they're both equivalent. You could 
write software and either of them. We know that's provably true. There's nothing you can write in 
one language you couldn't fundamentally write in another. But the difference is you can write 
nonsensical things in languages that don't have type systems. And so when you kind of look at it 
through that perspective, it's like, “Well, why would we do that to ourselves? Why would we 
allow that to be a possibility?” 


And I think the historical answer is, look, programming is kind of been both a little bit of CSS, but 
a lot of kind of engineering and hobby creation of tools and languages. We've just watched this 
industry evolve for years and years going through dynamic language after dynamic language. 
And I don't think it's any surprise that in 2021 TypeScript is on the rise, Python is getting a type 
system, Ruby has flavors of it that have type systems. Certainly the .NET ecosystem has them. 
Java has had them forever. It's getting more sophisticated. I think the trend line has been 
towards letting the computer help you eliminate entire classes of problems that just shouldn't be 
possible at the language level. That's why I think some of these choices, they're not flippant. 

© 2021 Software Engineering Daily 7



SED 1280 Transcript

They're actually highly meaningful. And the same on our backend, right? The calculus for why 
would you use Lambda? Well, to me, that's a really simple, straightforward one, which is think of 
anything that your company might do operationally that other companies are also doing, in 
some sense, is wasted effort, right? It's not unique to your product or your value proposition, 
right? It's a pure tax. 


And so when I look at what it takes to manage and maintain EC2 fleets, or Kubernetes clusters, 
that's not specific to your product, right? That is something that every company that uses those 
technologies has to engage with. Well, the advantage of doing something with Lambda, and 
let's set aside for a second kind of the bleeding edgeness ever than not. It eliminates an entire 
class of operational concerns. I'm not worried about health checks, and failover, and patching of 
operating systems or container technologies. That's all handled by the layer of AWS now. So 
from a leverage standpoint, it's a massive win. Really letting our team focus on what our product 
is. 


Now, obviously, there's still DevOps stuff that we do. But assuredly, it's much less than if we’re 
maintaining a cluster. So I think when you're choosing technologies, all those decisions about 
which tech you adopt and which class of problems that tech just totally obviates is hugely 
meaningful for leverage. And it's a fun one to tease out each and every one of those. I have 
similar feelings with GraphQL versus a more typical REST-based JSON API. These choices 
have added up for us such that our relatively small team has been able to make a very wide and 
deep product. And that's just been a fantastic feeling. 


To your point, this isn't my first rodeo building software companies. I have made mistakes. I 
have gone down paths where I over-indexed on the technology and it came back to bite me, or I 
under-indexed on it, and we didn't get the leverage we needed. And it takes a little bit of honing 
over time to figure out where those lines actually are. But if you find them, it's pretty great.


[00:19:22] JM: I'm bought in to what you're saying. Your stack is TypeScript, Elm, GraphQL, 
Lambda. I assume other serverless stuff, maybe step functions or things like that. And one thing 
I'm curious about exploring is, particularly on the backend side, the technical debt and the 
technical challenges that come with a serverless focus, because from my point of view, like the 
game is over. If you can go all-in on serverless, you absolutely should. You were introduced to 

© 2021 Software Engineering Daily 8



SED 1280 Transcript

me by Troy Goode over at Courier. I had this conversation with him like a little more than a year 
ago. Just like his company is entirely serverless. They're an infrastructure company. And 
basically it’s like if you can be serverless, you should. But I'd love to know, what cost does that 
come? Like what are the penalties for going all-in on serverless? What are the backend sources 
of technical debt?


[00:20:18] AW: That's great. So you're saying there're no magic bullets that just give you pure 
upside? 


[00:20:23] JM: Apparently not.


[00:20:24] AW: Apparently not. Well, I'm still looking for them. Yes, there are costs of going 
serverless. We definitely paid them along the way, and even now continue to pay them. I think, I 
believe and I think I've seen that it's a lot less, but they are there. So in the earliest days, for us, 
when we were adopting serverless, the real challenge for us was understanding where to draw 
the lines. And I don't think this is surprising given any backend technology choice. But for 
serverless in particular, what is a function? Like how much should a single function do? And 
should it just do one thing? Or should it be parameterised and be able to do kind of multiple 
things? Do you divide functions up by functional area of your product by a repo, by some other 
set of concerns? Just figuring out where to draw the lines and split how code is developed and 
deployed is a non-obvious question. 


So we have definitely explored all the all possible variations of this, from tiny functions that do 
barely anything, to monolithic functions that do almost everything, right? For instance, we have 
hundreds of serverless functions. Some are hyper focused. Take some JSON and statically 
transform it, spit JSON out, right? And then you've got something more like our API, which is 
largely self-contained in a single Lambda, which you could argue is just overly large. And I'd 
have trouble defending that. So that's one real concern, is just where do you draw the lines? 
And that has a lot of implications for the development process, for ops, etc. 


The next set of concerns that we ran into are how do you coordinate all your various Lambdas? 
You need to start becoming a master of figuring out when to fan-out, when to fan-in. Which tools 
you use to coordinate them? So are you going to do one Lambda invokes the next Lambda? Are 

© 2021 Software Engineering Daily 9



SED 1280 Transcript

you going to buffer those two things with a queue? Are you going to use SNS instead maybe to 
trigger listeners on some more pub/sub model? Should it be a Kinesis stream? Should you be 
using step functions to coordinate these Lambdas? And there's no obvious answer for any of 
those questions either. You kind of have to look at the shape of the data, the rate of the data, the 
managerial pros and cons to each of those approaches to try to figure out how those things 
ought to get stitched together. 


And I think in the earliest days of pure serverless companies, there was just very little writing out 
there. So there was not a lot of community knowledge to draw on to figure out how to start 
dividing those lines. Going forward, I think there are still a lot of these same challenges ahead of 
us as we start to get more sophisticated in terms of multiple teams working on different things. 
Making sure they can't step on each other's toes, uptime of each Lambda. You can kind of think 
of each as a microservice. And uptime here, I don't mean necessarily is it available? It's almost 
guaranteed to be at least available. But as code changes over time, you need to sunset 
Lambdas for one reason or another that has implications to any other number of Lambdas. So 
you kind of have microservices challenge all over again. So there are very real concerns. 


The one kind of North Star for me, if I were to look 10 years ahead and say, “Well, how do I think 
this is all going to evolve on the backend?” I would look to something more like a single 
programming language that allows you to author a backend, and the act of compiling it figures 
out how to split that across a number of services. So if you imagine a programming language, 
like let's take TypeScript, for example, and instead of just having array.map, you have 
array.parallelmap, where the parallel in this case means split out each mapping operation over 
as many Lambdas as you need to to achieve kind of hyperscale, right? 


I think what's going to happen is you're going to see more of the infrastructure and code keep 
merging until you get to a single language that manages all these questions. And at that point, 
using the right patterns becomes a lot easier, because you're talking about code and 
infrastructure in the same breadth, as opposed to two sort of totally separate things. And there 
are some bold companies going down that path today. Like I don't know if you've gotten a 
chance to see Unisonweb, but that's essentially what they're trying to build, is a single 
programming language that also encompasses infrastructure and abstract –


© 2021 Software Engineering Daily 10



SED 1280 Transcript

[00:24:49] JM: And Dark. Dark, also, right? 


[00:24:50] AW: And Dark. Yeah, exactly, right? Dark has even bolder vision, which is to not just 
do the backend, but the entire deployment model, the coding environment, the language. But 
yeah, those are probably the two products and companies that I think, are looking towards more 
of the end game, while the rest of us kind of inch there. But if I look at my own codebase 
through that lens, that kind of helps maybe answer some of these questions around how you 
might think about splitting your code and when it makes sense and when it might not.


[00:25:21] JM: What are the infrastructure choices that you've made outside of just Lambda? 
What are the other pieces of infrastructure you build off or the other monitoring tools? Whatever 
other tools you can share?


[00:25:33] AW: So I think we've got a fairly – An otherwise fairly Vanilla AWS application. So I 
think what I'm about to mention to you will not shock anybody, but we have an Aurora RDS 
cluster. We use copious SQSQs. We use S3 to store temporary data. We have a Redshift 
cluster to handle analytics. We use step functions, which are just fantastic for coordinating kind 
of long-lived operations using Lambdas. I think that's all great and fantastic. 


In terms of monitoring, we lean heavy into CloudWatch and CloudMetrics. There are, of course, 
entire companies dedicated to providing better UIs to your logging and metrics than what you 
get from AWS, and some of them are fantastic. We also use Datadog to do some of our 
application metrics. But otherwise I think it's fairly, fairly Vanilla in terms of our infrastructure.


[00:26:29] JM: Revisiting the company side of things, what has been your strategic expansion 
into supporting different enterprise use cases? Like take me from your MVP today and how you 
chose the product expansion.


[00:26:50] AW: That's a great question. So the MVP was very much focused on telling you what 
you didn't know, right? You didn't know these things. We’re going to tell them to you. And as we 
started getting that into the hands of more teams, more IT folks, around the ecosystem, you 
start learning about the other problems they have. Like why do you care that there are things 
you didn't know about, right? Sort of the next part of the question naturally. Like you only care to 

© 2021 Software Engineering Daily 11



SED 1280 Transcript

uncover the software because you're trying to do X. Well, what is X? X can be I need to manage 
costs. It can be I need to understand my security footprint. I need to understand my compliance 
posture, or my GDPR, my ability to even execute on GDPR if a customer would ask me. Or I 
need to understand what these things are so I can efficiently get people in and out of them or 
maintain operational continuity. There all these different reasons people want that data. So once 
we started giving them the data, one wonderful thing about b2b, and I've done consumer, I've 
done education, I've done some b2b. A wonderful thing about b2b is that your customers and 
your potential customers are very clear about what it is they want. So we started hearing all 
those use cases, “I want to be compliant. I want to save money. I want a more efficiently on and 
off-board employees.” 


And from there, I think what you do is you look at, “Well, where can we be most helpful?” right? 
Where does this data set really shine and how can our software do more for those folks? And, 
strategically, for us, what we discovered as we went was there's going to be three layers to our 
product, the system of record, getting all the data in one spot and making sense of it, de-duping 
it, merging it, presenting it in a really helpful way. A workflow layer for a variety of use cases, 
everything I just described, you're trying to accomplish. If our data can help you accomplish it 
better, then our data ought to be able to set the project plan for you dynamically. So we knew we 
were going to have a workflow layer. And then the last thing that we also knew is that, 
fundamentally, for all these various concerns, given how decentralized IT decisions are, how 
apps are adopted, there's no future in which an IT product does not involve everybody in the 
company in some capacity. So we need an employee portal experience, which is to say, if we 
need to ask you, “Hey, which of these tools you're still using?” We need an ability to contact 
each employee in your organization to get those data points from them to help IT do their job 
better. Again, because not all of it can be automated, certainly not sentiment, but even the long 
tail of tools can't be automated. So we started building through that stack of those three layers, 
adding the most value that we couldn't kind of prioritize in that way. 


And so, for us, I could get into the specifics of each of those things that we did, but the overall 
strategy was deliver people the best source of truth they have never had before. Then use that 
truth to dynamically help them accomplish the projects at-hand and involve the company as 
necessary, because it's just something you have to do in today's day and age.


© 2021 Software Engineering Daily 12



SED 1280 Transcript

[00:30:03] JM: On the competitive front, I don't know this area as well as a lot of other 
infrastructure areas. I think one of the competitors that comes to mind is Rippling. Am I right 
about that? Is that the domain that you're playing in?


[00:30:17] AW: Yeah, it's interesting. I think we definitely have direct competitors. So they're the 
Intelo's, Tory's, Productive’s, Zylo’s. There're a number of folks who have sprung up to do SaaS 
management. There are some IT companies, for instance, Bettercloud that provides a lot of IT 
automations that had started trying to offer SaaS management as well. And then there are 
adjacent companies who I think our vision is just very similar to like Rippling, right? And so I 
think maybe your audience hopefully knows Rippling, but if not, they are company started 
designed to do HR plus IT. It's actually started by the founder of Zenefits. This is his second go 
around at this. So there're a lot of similarities there. And their essential view is if you know the 
truth of who's in the company and what the team layout looks like, then onboarding a new 
employee from payroll, through benefits, through software, and even devices, it kind of all flows 
naturally. Rippling tends to serve companies smaller than us, where a single decision to address 
HR sets of concerns alongside IT concerns make sense. But as you get into larger companies 
that breaks down, it's very hard to imagine one product that both perfectly satisfies the needs of 
IT and perfectly satisfies the needs of HR. And so we tend to play more upmarket than Rippling. 


At the super scale end, you maybe have a company like ServiceNow, which is one of those like 
dramatically large companies very few people seem to have heard of outside of the industry, but 
they're massive. They serve giant companies of the world. I'm not sure these exact customers, 
but think that Walmarts, Toyota's, and been doing it for decades, and it's very similar in a way, 
right? They have one data model, one platform, many use cases. That’s one of their kinds of 
slogans. Because managing this stuff is just very complicated. 


And I think kind of we're all sort of siblings in this in that it's all very complicated, whether you're 
a sub-100 person size Rippling consumer. Someone using Blissfully in sort of the midmarket. 
Maybe you're using ServiceNow at the largest end. All these companies have similar problems, 
because the rise of software has just been so dramatic and powerful that it just creates the need 
to have these products that help you wrangle it all.


[00:32:41] JM: And is this like a technology category that basically every large company wants? 


© 2021 Software Engineering Daily 13



SED 1280 Transcript

[00:32:50] AW: Well, I’m biased? I hope so. I hope that the value we're offering is something 
that people want. I think the answer is going to have to be yes, for a couple of reasons. One is, 
all the data we have and that other players have suggests that the rise of software is not going 
to slow down. And in fact, here's an interesting stat for you. The top three expenditures for 
companies traditionally are payroll, your lease, and software. And in the post-COVID age, 
number two and three there just flipped, right? With software taking sort of the second position 
for many companies at this point. It's probably not hard to imagine a future where this starts 
rivaling even payroll, right? But that's a different conversation. 


So when you look at the rise of software and the explosion of niche tools, so much of your 
company's dollars are going to software. And just the sheer number of applications is going up. 
That if you care at all about leverage, efficiency, all these things, you're going to need to have a 
great understanding. And it's not something a human can deliver on. And no sleight to my fellow 
people, it's just if you're trying to maintain a spreadsheet of this, yes, you may be able to, for a 
brief moment in time, nail the exact vendors that you use by laboriously serving all various tools, 
data points, people. But the moment you complete that list, it's immediately out of date, which 
means it wasn't a great use of your time. And that doesn't even get into, “Well, who are all the 
users of those applications? How much do we spend on that?” It's far too much data for people 
to manually maintain. 


And then on the other end of pressures, you've got the rise of various security standards, right? 
So let's take SOC 2 is kind of the compliance craze that's sweeping the b2b nation. Every 
company wants to know that their vendors are some minimum level of responsible with their 
data, their security practices, etc., so that there won't be some massive leak or some 
discontinuity of service. And so we've all kind of picked a few of these standards that are 
becoming, frankly, table stakes for b2b companies. If you're looking at one vendor or another 
and you've got one that has clearly invested in security and compliance, it makes it a lot easier 
to go with that vendor because you know that they care about the same things you do. And that 
sort of spreads virally, right? Like moment you start caring about it, then other vendors who 
aren't running your business, they need to care about it. Then in order for them to deliver on it, 
their vendors have to care about it as well. So that's spreading rapidly through the b2b 
ecosystem. I don't think that's going to slow down at all. I think it's going to accelerate. Other 

© 2021 Software Engineering Daily 14



SED 1280 Transcript

things like data privacy for consumers. I mentioned GDPR earlier. That's another one of those 
things that matter. And so understanding your vendors and their investments and then 
managing how you collect that data, or if you use Blissfully, we’ll bring that to the table. We 
already have all that data on most of your vendors. This kind of management, I think, becomes 
table stakes for companies that use a lot of software. And the data suggests that all companies 
are going to use a lot of software.


[00:35:55] JM: The number of integrations that you must have to build is just going to grow and 
grow and grow and grow over time. What's your strategy for managing those in a sustainable 
fashion?


[00:36:10] AW: This is a great question. We actually went through a major project last year to 
ensure that as we keep delivering integrations to our customers, our ability to maintain them is 
only getting better and better. And so here I would point out a few things. Number one, we are 
big believers in type systems, as I mentioned before, which means we've got a lot of great 
interface definitions under the hood that we know that if we build to that interface, and the 
functionality is correct, that integration will seamlessly fit into all the downstream value that our 
product can leverage that data to provide. So we take a lot of time to get our domain modeling 
right so that we know exactly, when we're looking at a new app to integrate, all the various 
interfaces we want it to support. And then if we build that, we feel confident all the downstream 
systems work. So standardizing how different data sources or automation targets seamlessly fit 
into your infrastructure so that you're only making decisions on the edges is incredibly 
important. So we spend a lot of time doing that. 


Next, you get into actually offering those. So we've spent a lot of time with things like smart 
cogeneration, and really isolated testing environments, so that we can very rapidly spin up these 
new integrations and test them in isolation before exposing our system to them. And then thirdly, 
there's an operational concern to all this, which is once you've got all these integrations running, 
how do you manage them? How do you report errors both to your dev team, or your ops team, 
to your customers, when they can't be solved automatically by our system? And there, again, 
we've taken standard interfaces, this time in the form of step functions, such that all of our 
integrations are managed by the exact same set of operational code so that all that error 
handling, recovery, time of day, rate limiting is wholly handled by one system. And so we've 

© 2021 Software Engineering Daily 15



SED 1280 Transcript

invested over and over and over in our leverage to be able to author integration after integration 
after integration precisely because it's going to take hundreds. And I don't think we'll ever stop 
building integrations. It's sort of the name of the game to service our customers in the best way. 
So yeah, we've invested a lot to give our small team just an incredible amount of leverage. 


[00:38:27] JM: How many people you got working for you now?


[00:38:30] AW: So, on the engineering team, we're 10 people. And I'm both proud to share that, 
because I think this team has done a lot, and also because we're hiring. So if anybody's 
listening, of course, please reach out to me if any of this sounds interesting. The split is about 
two-thirds backend engineers, one-third front end engineers. And it's a fully distributed team. We 
actually started sort of 5050 on-prem and remote. And over the course of just finding great talent 
to work with, and certainly the pandemic accelerating some of that, we've leaned into a fully 
remote engineering culture. So we have folks in Europe, we have folks in the West Coast, the 
Midwest, the Northeast. I don't think we have the Southwest yet, but we could. So it's been a 
small team, but it's been a highly efficient team. And I'm very proud of the work they've done.


[00:39:20] JM: So what's the division of labor across the team?


[00:39:23] AW: Yeah. So, it's funny. When I hire, I tend to try to hire for a couple of different 
attributes. Number one is product thinking. My assertion is that engineers or product people with 
a much kind of more technically narrow focus. But if you're dealing with the domain and you're 
trying to generate outcomes for customers, you are in fact a product person. So I tend to try to 
hire people that have product sense whether they're going to do frontend or backend. All of it 
matters. You're making decisions constantly. And if you're looking for folks like that, you actually 
tend to find more full stack curious, if not outright capable folks, because they're interested in 
delivering value to customers. And they follow that value creation, whether it takes them from 
database management through API design through the frontend. 


So while the team split, maybe two-thirds backend engineers and one-third frontend engineers, 
people cross that boundary all the time in pursuit of delivering the feature that they're 
responsible for, their pod is responsible for. And so there're no really hard divisions. There're 

© 2021 Software Engineering Daily 16



SED 1280 Transcript

more preferences and areas of expertise. But it's been exciting to watch people kind of push 
their own technical skill set in order to accomplish something unique.


[00:40:42] JM: Let's zoom out a bit. Tell me about your vision for how the company unfolds over 
the next five to 10 years. 


[00:40:49] AGH: Great question. Well, we serve hundreds of customers today, which I'm very 
proud of, and I hope that’s thousands of customers over the next couple of years. So just from a 
number of companies were able to help, certainly, that's up there. In terms of the impact that I'd 
like this organization to have, I would like folks to realize that if you have a platform for IT that 
can fundamentally help you accomplish your goals and turn how we think about IT away from 
being a cost center into a point of organization-wide leverage, that would be a huge spiritual 
win. 


So, I think classically, if you look at how some companies at least have viewed IT, its cost 
center, right? Its cost of doing businesses to tax. You need people to help manage the 
technology, but they're just there to kind of keep the engine greased and working maybe with 
some sort of bare minimum level of responsibility. And I think that's a little unfortunate. That kind 
of forgets the fact that, ultimately, every person in the organization that you hire is providing 
leverage. And technology provides each of those folks leverage in turn, like that's the whole 
point of it. And so what a real win for this company over the long haul would be helping folks 
really realize and demonstrate and get great value from the fact that a well-run IT organization 
empowers everybody throughout the company to provide your organization just far more 
leverage and impact on the world, whatever your mission is. That's how Blissfully succeeds, is 
we help companies empower people through technology in a very real way, not as a 
catchphrase, but day-to-day, you always have access to what helps you do your job better. And 
we're helping companies realize that.


[00:42:43] JM: What are the biggest technical challenges that stand in your way? And, I guess, 
business challenges as well? Give me a perspective for what stands in your way.


[00:42:52] AW: Yeah. Well, I think from a business/technical challenge, and we talked about this 
earlier, is just that the number of applications and the diversity of sophistication of applications is 

© 2021 Software Engineering Daily 17



SED 1280 Transcript

all over the map. There are thousands and thousands of apps. New ones are getting created all 
the time for every niche. And they're not all created equal. Some have API's. Some don't. Some 
support single sign on, some don't. Some support automatic provisioning. Others won't. When 
you start looking at all the various mechanisms these tools have to allow themselves to be 
managed, or that make it resistant to manage them, it is just very hard to wrangle that chaotic 
and that diverse of an ecosystem into a single platform. So I think this is both a real challenge 
we have. It's certainly a very real challenge for our customers in a world where a Blissfully 
doesn't exist. And kind of like interestingly, I mean, maybe intuitively, or counterintuitively, 
depending on your perspective, the harder it is, sort of the more meaningful our work becomes, 
right? Because as an individual company, you would have no hope. And so you need a single 
organization to invest in getting all of that under control. That makes our job very tough from a 
technical perspective, a business relationship to all these various different entities as we try to 
do our best. It's just very complicated. And I think we are committed to the mission. We enjoy 
our success when we have it. We get frustrated when we can't go fast enough or when we 
suffer a setback trying to deliver something unique. But I think that diversity of the ecosystem 
technically is the same reason people value us and it's the same thing that makes doing what 
we do just insanely challenging.


[00:44:43] JM: Can you tell me any other unconventional infrastructure decisions you've made?


[00:44:48] AW: Well, there are a few things that we've built internally that we get a lot of use 
from that are powerful. And so I don't know if they're unconventional, but they're more things 
that I hope people would give a go. So we practice continuous testing, continuous deployment. 
But we've tried to bring the robots in even earlier into our development process. So I mentioned 
earlier – Actually, there’s a great quote by Agent Smith in the Matrix, if anybody's a fan, which is, 
“Never send a human to do a machine's job.” It's actually a phrase we've used internally. Our 
chief architect, Jacob, clued me into it. But, for instance, if you're ever doing a PR review and 
you are watching your team give the same feedback over any number of PRs. Why are we 
having humans provide that feedback? You have to ask yourself, “Is that useful? Is that a good 
use of their time? Or should they be focusing on higher level issues of code quality and 
organizational strategy?” 


© 2021 Software Engineering Daily 18



SED 1280 Transcript

So we use a great tool called Danger JS, if you're familiar with it, which allows you to code up 
rules all your PRs are subject to. So whether it's splitting out a migration from a code change, 
and that's one of our policies here. You can't ship the two simultaneously. They need to be 
separated. We're not unique in that, but we have the bots enforce that. Or if you fail to check for 
certain conditions on the backend, or certain database schema changes are being proposed, 
the bots will automatically flag past operational issues to you in that moment in time. And we 
don't always have those issues serviced in the PRs. There's not like a static checklist. People 
get fatigued. They stop paying attention. So we have our bots strategically guide us as we go. 
And we're constantly adding that library.


We do the same thing on the front end using Elm Review. And, in fact, Elm, again, it's just a 
powerful language. The bots can propose the changes outright, and you can just accept them, 
which has been nice. So we leverage a lot of code gen, automated code review, code 
manipulation, to give us more leverage. So that's been great. And two other techniques that we 
use are maybe a little bit more social. I'm a big fan. I think the team is a fan. And I'd be curious if 
other organizations do this. One is we've instituted a policy of rubber ducking in Slack channels. 
So every engineer has essentially what amounts to a public engineer's notebook. So RD, rubber 
ducking/aaron as an example. And day-to-day I just sort of vocalize what it is I'm working on as 
I'm working on it. 


And the reason we do this is, because in a distributed organization across time zones, across 
concerns, we still get together for stand out in various meetings to kind of discuss what we're 
working on. But if I am working on something that's pretty technically involved and I get to a 
place where I'm stuck and I want to pull someone in. Well, I don't need to spend time bringing 
them up to speed synchronously on what it is I've been working on. I can just add them at that 
point in my rubber ducking channel. And either right then in there, or at their own convenience, 
depending on time zones and their workload, can get up to speed and provide the answers to 
unstick me. So we try to get this culture of developing in the open air publicly, because it 
accelerates collaboration when we need it. And we even taken this a step further where every 
story that gets created in our issue trackers, we use Clubhouse, automatically gets a Slack 
room spun up around it. Automatically synchronizes data from Clubhouse into it as changes are 
made, pulls participants in and out of that channel. So people can have very freeform long 
discussions about the code about the feature in a space that doesn't pollute the story, that 

© 2021 Software Engineering Daily 19



SED 1280 Transcript

doesn't pollute popular channel like dev, that allows people really to keep establishing a shared 
context. So we lean very heavily into this kind of sharing your work in public to aid collaboration 
and make for better products.


[00:48:30] JM: Aaron, thank you so much for coming on the show. It’s been a real pleasure 
talking to you. 


[00:48:33] AW: Yeah, thank you. It's been mine.


[END]

© 2021 Software Engineering Daily 20


