
SED 1257 Transcript

EPISODE 1257

[INTRODUCTION]

[00:00:00] JM: Can increase their efficiency and stability and make debugging easier. The 
company Akita Software observes the structure of programs to visualize, map and manage API 
behavior. By monitoring the API's in your applications, Akita can catch code changes that may 
break production applications. While this work is normally labor intensive, Akita automates it by 
analyzing the source code and logs. To check the observed behaviors against intended specs 
and contracts, this information can then be generated into maps that help you document and 
version your API's across the entire service ecosystem. 

In this episode, we talk with Jean Yang, founder and CEO of Akita Software. Jean was 
previously an assistant professor at CMU and a postdoctoral researcher at Harvard Medical 
School before that. We discuss modern API's, their role in applications and how Akita Software 
makes understanding and building API's easier for developers. 

A few announcements before we get started. One, if you like Clubhouse, subscribe to the Club 
for Software Daily on Clubhouse. It's just Software Daily. And we'll be doing some interesting 
Clubhouse sessions within the next few weeks. And two, if you're looking for a job, we are hiring 
a variety of roles. We're looking for a social media manager. We're looking for a graphic 
designer. And we're looking for writers. If you are interested in contributing content to Software 
Engineering Daily, or even if you're a podcaster, and you're curious about how to get involved, 
we are looking for people with interesting backgrounds who can contribute to Software 
Engineering Daily. Again, mostly we're looking for social media help and design help. But if 
you're a writer or a podcaster, we'd also love to hear from you. You can send me an email with 
your resume, jeff@softwareengineeringdaily.com. That's jeff@softwareengineeringdaily.com. 

[INTERVIEW]

[00:01:59] JM: Jean, welcome to the show. 

[00:02:00] JY: Thank you. 

© 2021 Software Engineering Daily 1



SED 1257 Transcript

[00:02:01] JM: You are working on Akita Software. And in order to get into what Akita does, I'd 
like to first explore the space of API Management. Describe the tool set that is used by a typical 
company to manage their API's.

[00:02:17] JY: Yeah, sure, absolutely. So other users we've spoken to, a lot of people use tools 
like Postman for collaborating on calling API's, testing API's, automating the engagement with 
API's. Sometimes people will use SmartBear or other tools for automatically testing their API's. 
Some companies will use API gateways for automatically managing what goes on across the 
API's as well. And the place where we saw there was a gap was this all felt – Well, so I am a 
programming languages person. And so I'm all about abstraction. But this all felt a little bit low 
level to me. So Postman, the way I saw it was, there's a lot of great UI and collaboration tools 
around cURL requests, or single API calls. But what's the sum total of the API calls? Similarly, 
for a lot of the other tools? It's very point-wise API call management.

[00:03:11] JM: So what are the opportunities for building a better tool? Like, what are the gaps 
in the tooling?

[00:03:19] JY: Yeah, absolutely. So something that was very inspiring to us at Akita was the 
observability space, because we felt like what a lot of the companies in the observability space 
are doing is they're saying, “Well, you can take these traces. And then you can like build on top 
of them. You can kind of like build pictures of this is what's really going on as your system is 
running.” Your Datadog has all these visualizations on top of, you have logs, but like this is how 
the logs are over time. This is how your services are talking to each other. Like this is a story 
that your logs are telling. 

And so I started Akita with the question of like, “Well, can we tell like a higher level story about 
what's happening across all the API's? Can we map out the graph of interactions across all of 
the API's? Can we have a way to talk about API behavior and not just a single request and 
responses, or collections of requests and responses? But here's how this service is interacting 
with that service. And this is what happens if you change some things. This is what the 
performance bottlenecks might be if you put all these services together. There's this like 
emergent set of behaviors that, well, I felt was missing, but I felt it was missing, because when I 

© 2021 Software Engineering Daily 2



SED 1257 Transcript

talk to developers and software teams, they're saying, “Look, there's really good like nuts and 
bolts tools. But the emergent behaviors of our effectively distributed systems are really unclear 
to us.”

[00:04:48] JM: So let's take a typical API example that we can maybe extend through the 
conversation. Let's say we've got like a checkout API for an ecommerce website, and the 
checkout API calls the payments API, the payments API calls some other API. So we've got 
here just kind of a typical trace of different API's. Explain what kinds of errors or problems that 
you would catch if you were using Akita.

[00:05:19] JY: Yeah, so I'll explain the vision. And then I'll explain the vision and original 
motivation. And then I'll say concretely what we do now, because I will fully admit that we're like 
on step one of N-steps. So the vision is – So, like right now, if you have like a checkout API 
talking to a payments API, like when you're developing, you develop them kind of separately. 
There might be documentation that they're related. But in development, these are isolated. Your 
tests probably – Like your checkout API mocks out the payments and vice versa. Like the 
together behavior is not quite there. 

And then what likely happens today is, especially if you have more API's, a lot of your 
information about like, what happens when these API's are together? Do I have performance 
bottlenecks? Do I have weird data flows that are causing issues? Like all of that happens by 
observing production. So there's this whole great area of principle, testing and production. 
Someone tweeted at me yesterday, this is what I believe in, not the YOLO kind of testing in 
production. But principled Canary testing, AB testing, controlled rollout, stuff like that, like that's 
been the standard practice for if you have a bunch of services, how people are understanding 
their systems. 

And so the key division is like, “Well, look, why should people wait until production to get all this 
information?” right? Like what's happening today is like things happen in production. You're kind 
of sifting through logs and traces. You get some visualizations, but what's actually happening? If 
there is a bug, you don't catch it until things are already happening. And then to back out what 
really happened, you're playing a little bit of detective with respect to logs and traces that like 
take a lot of work today to get the full context of like your code level semantics. 

© 2021 Software Engineering Daily 3



SED 1257 Transcript

And so the Akita vision is like, “Look, at development time, we have enough of a picture of like if 
you're a checkout service programming and payment service,” we're like, “Alright, this is like 
what we saw before of how people are using payment service. We watched API traffic going to 
it. We watched API traffic coming out of it. We built a model.” So when people are coding 
against it we're like, “Okay, this is like how the API looks. Maybe like even further out, this is how 
people typically use the payment service.” And then we can alert people on like, “Oh, if you put 
this sensitive date of birth here, like that's going to go to this other service,” like some other 
service that that payment talks to. And are you sure you want it to go there? Or if you use some 
database, we're like, “Oh, well, when you send data off to payments, like they also use that 
same data resource. So like are you sure this might cause a bottleneck?” 

So like the vision is like at development time we can start getting those kind of insights. And 
then when you're actually running in production, there's like this notion of instead of like logs, or 
not instead, on top of logs and traces, what I really believe in is lifting things up to the per 
endpoint layer of like can we talk about endpoints when we talk about performance bottlenecks 
issues, with data issues, with bugs? Like if a bug arises now like today in payment service, you 
might be like, “Okay, well, who called me? Where did this come from?” You're tracing logs and 
traces and doing a little bit of forensics. 

What I would love to see, which is the ultimate Akita vision is we get to payment service, and the 
tool is like – Well, okay. So you were called by checkout service. This is the sequence of API 
calls that happened. And then you can dig into like logs and traces and things like that too. This 
is who called them. And here's a step of things that happen. And even here's a link back to the 
code changes that we observed around this time where this happened. So in short, the long-
term vision is sort of having this per endpoint way of tying together this test staging prod, like 
development time, like the things people actually did at development time with production time 
behavior. 

And so now, let me tell you what we actually do today. Because this is like a very – Like 
probably pretty abstract and far-off vision. So what happens today is when you're developing 
checkout service, at test time, what Akita does is it can watch your API traffic. So there's a few 
ways we watch API traffic. We either have an agent. So if you have network tests for your 

© 2021 Software Engineering Daily 4



SED 1257 Transcript

service, we can just watch that. Or we also integrate with different integration test frameworks 
so that we can plug into your flask, your fast API, your Django, Rails, etc., and we can watch the 
API traffic there. We build a model of what we see. So we build a model of the endpoints, the 
fields, what you would normally see in an API spec, and then we're starting to build more of a 
detailed model. So data formats is one example of something that usually right now in an API 
spec people will put like string. But we can detect you have this kind of RFC of date time versus 
that. 

So there's a study that showed 21% of Azure failures that these people studied come from 
these like tiny data format changes. Like a lot of the people we talked to, they're like, “Yeah, 
cascading failures for hours because of tiny data format changes.” Like that's an example of 
something that gets folded into our API model. Eventually, we want to do things like the 
payments field relates to the date of birth field this way, or like relationships between fields, 
things like that. Like the eventual API model is very complex. But today, it's like endpoints, data 
formats, basic stuff. 

And then what we do is we also – Whenever things call out to other things, we store those 
connections. So like if checkout calls out to payment, we keep track of that. And we start 
building up a picture of how everything relates based on starting from tests if people want, but 
we also were able to plug in at every stage of development. So we have Kubernetes, Heroku 
integrations that can listen at staging and prod. And the one feature that we are offering now is 
diffing across API models. So what people can do on our tool right now is hook us up on every 
pull request or hook us up into staging or prod to sample at some rate, at certain intervals, 
generate API models, and then say, “Tell me what's changed between this point in time and that 
point in time.” 

So on a pull request, we can automatically say, “Hey, this data format used to be international 
phone number. It seems like it's US phone number now. You might be breaking some things.” 
We can say things like, “This field changed, or this path seems to be different now.” And even 
the paths, like that might sound like a trivial thing. But a lot of existing tools that diff on just raw 
traffic alone, like think timestamps, think unique ideas, like those things are all false positives 
right now in diffs. And so a lot of the work we did initially was just like get rid of that noise. And 
then we're starting to build up our models to more fancy things.

© 2021 Software Engineering Daily 5



SED 1257 Transcript

[00:12:01] JM: So I think the main thing we could focus on right now is the process of like I've 
got an API in production, and your agent is able to understand and record traffic to the degree 
that you can detect breaking changes. Am I understanding it correctly?

[00:12:21] JY: Yeah, yeah, that's exactly right. So like what we do, the goal is to detect 
regressions of interest by watching API traffic and modeling the API traffic in a way that we keep 
false positives low.

[00:12:34] JM: Okay. And what goes into that agent? What goes into the monitoring of an API 
that's already stood up?

[00:12:41] JY: Yeah, that's a great question. So one of the big goals we had for ourselves was 
to make this as passive as possible. So like introduce no production overhead if we can. So our 
standard agent uses pcap filters to passively watch traffic. So they're also called EBPF filters. 
But essentially, they are packet filters that watch the traffic going by. Look at what happens and 
then captures the events of interest.

[00:13:07] JM: And let's talk a little bit more about building that. So can you just tell me about 
some of the engineering difficulties in architecting that observability tool?

[00:13:14] JY: Yeah. Yeah, that's a great question. So I'll zoom out a little bit. And I'll say like the 
agent is one part of it. And then like how we get the agent, like how we like insert ourselves in 
like a non-invasive way as possible into like all parts of the system to watch traffic where people 
might want. So watch traffic has been like the main challenge we've been facing these last few 
months. So that's a great question. So for instance, to get stuff running in various staging and 
production environments. Well, I think one thing is just like where do we get it to run with the 
right permissions? 

So we recently released the Kubernetes docs, for instance. And so it's like, “Where do we sit in 
the container? Or are we a sidecar? Do we run as middleware?” Like there's like various 
tradeoffs that we considered when architecting that. We ultimately decided to run as a sidecar 
because it seemed very standard. And then there's like a pretty standard way of doing that. But I 

© 2021 Software Engineering Daily 6



SED 1257 Transcript

think like that's one of the easier ones. Another one that was harder was some of our users 
were like, “Alright, we want to run on Heroku.” And Heroku doesn't actually let you capture traffic 
using pcap. Like you can imagine, there's a bunch of like cloud platforms where this pcap way 
of watching traffic is actually quite invasive, right? And so to people who, I guess, have tried to 
do this network level programming, it may be obvious that not all systems will you just get in 
there and watch the network passively. 

And so for Heroku, for instance, we had to build some middleware approaches. So I personally 
did not build this middleware. So forgive me, for anyone who's listening who's like, “That's not 
how that works.” But essentially, for that we had to build a daemon that that middleware could 
talk to you. So essentially, like my understanding of how this works is like there's this daemon 
that runs Akita that can be like that middleware can talk to. And then there's middleware that sits 
with these systems. Gets wind of the traffic that way. I'll just leave it at that level of abstraction. 
And then talks to the Akita daemon to register like, “Hey, these requests and responses were 
called.” But it was extremely non-trivial to both build and design the daemon because you need 
something that's like – I think both from a usability point of view, right? You want the user to be 
able to like have certain amount of control over the daemon without having to script like a bunch 
of stuff where they're like talking to the daemon all the time, the daemon needs to be babysat 
like by some script. And then at the same time like you want the middleware side to be as non-
invasive and easy, like, close to one line change as possible for whoever's using it. 

And so, yeah, like even across different staging and production infrastructures, we're definitely 
not all the way there yet and covering all of them, but every integration we've built, I've been 
like, “Ha! This is a really interesting technical insertion problem,” because what you're 
essentially doing is you're balancing kind of like how do we build this so that we're not – An easy 
way to build it would be proxy everywhere, kind of like inject yourself, like introduce overhead at 
the expensive like you can just build this really, or like at the benefit of you can just build it really 
fast. But what we wanted was like, “This is long running. We can sit there. No one will notice 
us.” And so it's taken quite a bit of work to be as invisible as possible across all these systems. 

And then the like thing that I've also thought was really fun, which I also personally did not build, 
was our test integrations. So there are people who were like, “Hey, we want to run you as early 
as possible. But we've got like flask tests, and they don't call across the network at all.” We're 

© 2021 Software Engineering Daily 7



SED 1257 Transcript

using flask to manage our requests and responses. So we also built stuff that got in there. You 
can swap out the flask test client with like one line, and then we listen to your requests and 
responses going through there and we record them.

[00:16:49] JM: And as far as maintaining those recordings, do you like just save all the 
recordings to a database? Because I imagine, in order to discover that an API response has 
changed, you have to have a database of some successful API responses.

[00:17:06] JY: Yeah, this is a great question. And it's actually my favorite part, and parts that are 
being actually worked on. But I'm really glad you asked that. So on the user side, how 
everything gets saved is as HTTP archive files. So I recently discovered – Well, not recently, but 
through the course of building this, we discovered this format that's really surprisingly 
ubiquitous. Like all of some category of services use HAR files for like performance and other 
debugging. But they're this sort of like nice universal format for storing requests and responses. 
So like how our tool works is on the user side, they either run the agent, or they run a collection 
through one of our integrations. Those all generate HAR files. Then the higher files get shipped 
to us. And also here, something that I'd like to point out is we only ship obfuscated HAR files to 
us. And so at that point, like that was also an engineering challenge. And as we're talking about 
engineering challenges, like one, how do we work with obfuscated HAR files? But there're some 
interesting things there. 

But then in our backend, like in the Akita cloud, what gets stored is essentially traces that got 
made from these obfuscated HAR files. And then these traces are tagged in certain ways. So 
the traces are basically tagged with like if it got run on like a pull requests, or if you've got run on 
this service, there's metadata that gets stored with each trace. And then models get built from 
the traces. And then you can diff those models. 

And so like, essentially, what's in the database is like there's just a bunch of traces with other 
information about it. And then what we've been in the process of building user interfaces for are 
how do people want to manage these traces? Like what do they want to even diff? We started 
out with like, “Here, you can diff across pull requests.” And people were like, “Well, I want to run 
this in staging now. But there's no concept of a pull request in staging. So do we demarcate pull 
requests in staging?” Or do people want this hourly or things like that? And so that's something 

© 2021 Software Engineering Daily 8



SED 1257 Transcript

where we're currently working with our users pretty actively on trying to figure out, “Are we 
giving them the right interfaces for managing their API traces?” 

And then there's the question I think that goes back to what you're asking, which is like what's 
considered good? If it's a breaking change, like what's our point of reference? And so that also 
different users have different preferences on. Like some people are like, “I always want you to 
update stable to like the latest one that actually got checked in.” Some people are like, “No. No. 
No. We say what's considered stable.” And so something we've been working through is like 
what are the right defaults there and how do we want to expose options to people so as not to 
overwhelm them? 

But yeah, like the user interface questions around how to manage like – I guess the way you 
can think about us is like the way Datadog takes like a stream of logs and helps you make 
sense of it. We have a stream of requests and responses. And you can sort of take them off the 
shelf, build models, how you want. Say start here, and they're building a model, and then diff 
them. And then there's a question now of like, well, how do people want to manage them? 
What's considered good?

[00:20:03] JM: Are there other tools on the market for detecting this kind of breaking change? 
And how do you differentiate yourself from the other things on the market?

[00:20:13] JY: Yeah, that's a great question. So in the last six months, we've seen especially 
like Postman had to a blog post that said, “Well, if you use Postman, here's how we can help 
you identify removed end points and things like that.” And there's a company Optic, who was 
previously on your show. They're good for API's. And they've also started talking about this is 
how we can help you catch breaking changes. 

There's also this tool called Diffy that came out of Twitter that helps you AB test by essentially 
comparing traffic going to and from services. So if you migrate a service, it'll tell you like, 
“Here're all the traffic differences between that service and this service.” 

To us the big problem to solve, well, there are a few. I’ll say the two main ones that I think are 
relevant for this conversation. One is how to reduce false positives when you're detecting 

© 2021 Software Engineering Daily 9



SED 1257 Transcript

breaking changes, and like how do you as accurately as possible capture these breaking 
changes. And so our belief is that if you're just diffing on specs people wrote or API calls people 
new to make, you're catching a small part of what you could be catching total. So like data 
format changes and things like that don't necessarily get captured there. 

On the other side, if you're just diffing on raw traffic, there's a lot of stuff that changes every 
time. So timestamps are always going to be different whenever you change things. Unique IDs 
are always going to be different whenever you change things. It's my understanding that a lot of 
these tools right now, like you have to filter that out by hand. We've put a lot of work even for 
those detecting with like very few data points. This looks like it could be a unique ID. This looks 
like a timestamp. Because like it's easy to generalize if you have like 100 and you're like, 
“They're all different across these.” But often the cases you only have a few calls. So it was non-
trivial to get that to a good spot. 

And so with some of these other tools, you're kind of doing all this annotation by hand right now. 
And then the other thing is like, moving forward, we think that like this kind of modeling is going 
to be crucial for like usable change detection. So like if you break an implicit contract, for 
instance, like for this kind of device type for this field, you need like this range of things for that 
other field. Like that's not stuff people are going to write. That's going to be stuff that's also like 
extremely noisy to detect. But that stuff that my team and I, like we've done a little bit of R&D 
into there's some stuff we feel pretty confident that we can do well across a lot of data, a lot of 
systems, a lot of data, but like that's the part that we're really excited to get into as well. And so 
the tools that do like workflow management collaboration for these, like the model part we think 
we still bring to the table. 

And then the other thing is, I mean, I'm really excited about this abstraction that we're building 
that’s like the way existing observability tools are like, “Alright, we you have traces. We give you 
these visualizations.” We're like, “Alright, you have endpoints.” We’ll tell you things like 
authentications, changes to data type, all these things. And so giving people like a way to take 
raw traffic, shape it into models, and then manage that we think is like a very helpful way to 
manage complexity, understand complexity, see changes in their systems. 

© 2021 Software Engineering Daily 10



SED 1257 Transcript

And so, like so far, we're the only ones to think about things that way. I mean, I would love to 
see other companies do it, because I think that the more tools sit at this layer of abstraction, the 
more people will be used to seeing it, the less we'll have to be like, “Alright, this is what it means 
to do that.” But I think that's a new take we have on understanding these complex systems as 
well.

[00:23:36] JM: Can you tell me more about the onboarding process for – Like if somebody's 
listening to this and they're thinking like, “Yeah, this sounds quite useful. I'd love to have better 
API observability.” What is required for them to get started?

[00:23:56] JY: Yeah, sure. So they'll do like the best case version. And then I'll talk about some 
things that might arise, because various users who like got fell into the other cases are like, “But 
wait, we got left out.” So like best cases, you have an API for a service that you own and you 
kind of know like how to point traffic at it. You have traffic that you can point at it. And so if that's 
the case, you can sign up for the Akita beta. I'll let you into the beta. You get an account. You 
fire up command line. You log into Akita. And then you get your service running.  You say, “Hey, 
Akita, this is the port that I'm watching traffic.” And then Akita captures that traffic. That's your 
first API model. Then you can start diffing with that. You can start collecting more, etc. 

And so the fastest we've seen this happen is like 5, 10 minutes. But I will say that not everyone 
is in such a smooth position. So there are a few other things that might happen. One is like you 
might not actually own the API you run. Like the service is running somewhere else. You can't 
actually co-locate an agent to listen to traffic. In which case, you can either run a proxy or a 
browser. Proxies and browsers all capture these HTTP archive files. And so for those like – 
Again, figuring out you’re in that case, if you know you're in that case, that should also be like 
pretty quick. And then this should be few minutes. You can capture that. You can send that up to 
our cloud. It'll work. 

I think the harder case is if you're like, “Alright, I have traffic to go into the API, but I can't install 
you where I need to.” So like you can only listen to like test traffic or something like that. In 
those cases, what we've recommended people do is, “Here, just like check out a demo system 
we have.” But if you want to run on your own traffic, then we have some integrations now for like 
Python and Ruby frameworks where you would drop a one line change into your system. We 

© 2021 Software Engineering Daily 11



SED 1257 Transcript

would watch that test traffic. You would upload that to the cloud. And then that would work. I 
would say this is probably like longer than 10 minutes, because you'd have to get some stuff to 
work. 

And so for the first run, like there's a small range of what that would be, but then I would say like 
the longer thing is people are like, “Alright, I've run out on one service. How do I actually like 
collect diffs over my whole thing.” And so then there's a few things you can do. So initially we're 
like, “Alright, just integrate us into your GitHub, and then we'll just diff for you.” What we learned 
was people were like, “Wait, wait a minute. Like you're basically asking us like marry after one 
date here. We want to run you for a while before you integrate us into GitHub.” And so now 
we're starting to beef-up our instructions for like, “This is how you run us in CI for a while and 
get reports from using Akita before you fully integrate us and get like comments on every pull 
request.” This is kind of like how you try us. Like try us on your latest version of the code and try 
us on like another, like check out something that was like some version ago, stand that up, run 
it. If you're running us in a stage environment, that's like a little bit easier. So just like run us 
every like N-interval of time and we'll tell you what changed. 

There is like some config people have requested that we've built in. So if they want to ignore 
certain URL prefixes, if they want to ignore certain kinds of things, that would also be part of the 
setup. But I think like quick setup, like in short, quick setup, like you can get a taste of Akita in a 
few minutes to actually like get it in the right places to play. Like we can work with you on that, 
but that takes a little bit longer. But overall, like the intention is for it to be fairly non-invasive. So 
it should be pretty quick.

[00:27:14] JM: When you're talking to potential customers, is there any pushback due to tooling 
fatigue? Just beset by so many observability tools, people don't want to integrate with more? Or 
are they just eager to stack on more observability?

[00:27:33] JY: Yeah, that's a great question. I think we get a biased sample. I think that there's 
probably like – I would believe it if there are like thousands, millions of developers out there who 
are like, “We're tired of tooling. We just ignore Akita.” But like most of the people we get who 
show up, they're like, “Alright, I use X, Y, and Z.” So a lot of our users also use New Relic or 

© 2021 Software Engineering Daily 12



SED 1257 Transcript

Datadog or some kind of observability monitoring tool. And those are the ones who are often the 
clearest about, “Here are the gaps.” 

And I think like what you said about stacking on tools is right, because like the people who I 
actually talk to live will ask, “Hey, like what's your tech stack right now? What's your tool chain?” 
And usually, the people who show up to us, they'll run like the Panda bot. Some of them run 
Sonarqube. They'll run some kind of static analysis. They're like, “Alright, well, static analysis left 
us in the lurch here, here and here.” So then we have like these one-plus observability, or 
monitoring tools in runtime. And here are our gaps. And so here's like the shape we think you 
can fill. 

And so at least for the progressive people who are adopting our beta, it seems like they're 
running one-plus static analysis tools, one-plus observability tools, and they have a decent idea 
of where the gaps are. I think that people who are like, “I have too many tools,” probably aren't 
showing up at this point. And then people who are like no tool sometimes show up, but I think 
they're less convinced this is the one tool to run, because they are not running any other tools.

[00:28:56] JM: So take me inside the product development process as it stands today. So you 
got kind of this API breaking change detection tool. That's obviously useful today. What are you 
facing right now and what are you working on? What are you iterating towards?

[00:29:15] JY: Yeah, that's a great question. So I'll be very honest. We're early enough in our 
beta that there's still stuff we promise. Like last November we're like, “Oh, yeah, you want to do 
this? We'll do it.” We're still building on some of this. And so this includes – So there's a few 
parts of what we're working on. So to actually get a usable tool to automatically detect 
regressions as low-impact as possible for install, as low noise as possible. One, well, there's the 
low-impact install. So we've had users who showed up last fall who were like, “Hey, like we tried 
this, this works great on our one system. We want to integrate this now, but we want to run it on 
like X.” 

So like one of our next ships that are coming out is Django on Heroko. Like if you want to run on 
Heroku with Django, we have to install the middleware. We need it to build a daemon. So like 
they cannot run this on the full complexity of their systems without this integration. And so 

© 2021 Software Engineering Daily 13



SED 1257 Transcript

integrations are one thing we've had to spend a lot of time building. Well, like one, because it's 
necessary. But two, we didn't just ship like the quickest thing a lot of the time, because we're 
like, “Alright, these are people who are requesting this for real without overhead, all these stuff.” 
So we had to take all those considerations into place. 

And then there's, “How do we actually have low-noise diffs?” We had various ideas for like, 
“Yep, we think we can be lower noise for reasons X, Y, and Z.” But we get requests like, “Hey, 
I'm getting noise for these reasons,” and we're like, “Oh, man, we got to fix that.” And so as 
we're testing out with our beta users, we're learning all the dimensions that we like actually need 
to do better modeling to do better automation to actually cut down on the noise. And so that's 
one dimension that I think like we're focusing on that I don't see other people focusing on. And 
then there's like how do people actually want to run us in a very pain-free way? 

And so like to be very honest, I think our early users, they put up with their share of pain. They'll 
like Slack us on like a Sunday and be like, “Yep, I spent my weekend like trying to make like – 
To script you in here. But if you gave me this flag, my life would be a lot better.” And we're like, 
“Oh, my gosh. Thank you so much.” But like they're kind of cobbling together a bunch of pieces. 
And so we're like, “Okay, to actually be like a widespread, easy to use, good developer 
experience product, we kind of need to meet developers here, here and here, where they are.” 
And so like part of this is building interfaces for managing like API traces across different 
environments. 

And so like once people started running us like not just in tests, but in other environments, 
they're like, “Hey, how do I even tell you that like these are all the same thing and like this is 
what I care about across my environments?” And so we're like, “Yeah, good point. Good point.” 
So we've been building a product to meet them there. And then there's like, “Okay, well, I care 
about these changes, but not those changes.” Or, “You're finding this stuff. But I totally don't 
care.” Or you're just like – An example is in the beginning. We're like, “Cool.” 

So before we thought about things as API models, we thought about things as API specs. And I 
think that's an iteration that you saw previously, Jeff. But we saw them as API specs, where we 
put a bunch of random annotations in them with all the other information that we had inferred. 
So we're like, “Here's your spec. And then here's data formats, link all these other properties.” 

© 2021 Software Engineering Daily 14



SED 1257 Transcript

And people are like, “What the heck, man?” Like I don't write specs, because I don't want to 
read them. 

And so like an extreme and proven we did was we stopped showing people the specs. We 
started showing people like here are insights. Like we break down your authentications. We 
break down request type, response type, data formats. We let you filter, we let you search. So I 
think a lot of our product development has just been driven by like watching people use stuff. 
Seeing like what are they really trying to do? Giving them the things that they're trying to do 
much more easily? So like if we start seeing a bunch of people scripting something, we'll be like, 
“Yeah, we need to do that.” Or if like no one is showing up to some page that they asked for and 
then we talk to them. And they're like, “Well, I wanted this information, but not this giant dump.” 
Then we dig in, and we try to fix some stuff. 

So I think a lot of the core technology we like finally built up over the last couple years, but a lot 
of like what experience do developers really want? That's something we've been actively 
working on, we're still actively working on, and I think like getting it right will be very, very 
powerful.

[00:33:19] JM: Tell me a little bit more about the process that you're discussing where you get a 
lot of feedback from customers and sort of learn what to fix or what to improve on? What kinds 
of issues have you discovered that way? And how has the iteration process gone?

[00:33:35] JY: Yeah, that's a great question. It's something I'm very passionate about. I wrote a 
blog post a bunch of months ago about what's the role of developer experience and 
experimental programming tools stuff. And I think it's very, very important. And so I'll say a 
couple of anecdotes about things we learned. And so the whole reason we're building this 
product is we're previously building a different product. But this is the part of the product that 
people actually liked. So we started out building an API fuzzer, because people were like, “We 
want to know blackbox. What's going on with our services. We want to know like what's coming 
in what's going out? And we want you to be non-invasive.” And so we're like, “Okay, cool. Like 
maybe we can just like probe it with a fuzzer.” And people were like, “Yeah, that seems 
reasonable.” But then what we learned was people were like, “Well, we don't have API specs. 
So you can't prove it.” And so then we had to build this whole API spec infrastructure. And I don't 

© 2021 Software Engineering Daily 15



SED 1257 Transcript

know how much – You know about fuzzers, or the audience knows about fuzzers. But in order to 
know how to fuzz an API, that like requires a lot more than just knowing what the endpoints are. 
You have to know how the endpoints are related. What order they're called? How to generate 
data? Fake data for all the types. 

So like that's how we got started building a lot of this like inferring, like specifically the 
relationship of API functions to each other. And then people are like, “Wait a minute. If you have 
all that, that tells us like most of all we need to know about our API.” And we're like, “Hmm.” And 
then like we heard that from one person and we're like, “Okay, we're going to survey all the 
other people.” And they're like, “Yup, yup, pretty much.” 

And so like we even had like contracts at the time where people were like, “We will pay you to 
fuzz our API.” And then we went back to them. We're like, “Okay, stack rank. Like fuzzing, like 
API learning, data format analysis, all this other stuff. And like all the stuff we had built to make 
the fuzzer work, it was just like higher on the stack rank. So we're like, “Okay, like, first big 
learning. We're not doing the fuzzer yet.” We still have a fuzzer.  It's on a shelf. But we're going 
to make this other stuff work, because it seems like it's way more valuable. And then as we were 
doing that, like the regressions actually came through that as well. So people were like, “Yep, 
we want to use this.” A bunch of people showed up. And more people showed up to use our API. 
Like back then it was like API spec inference. We're like, “We don't know. Something's not 
valuable to us.” But like people seem to want it. So we'll just like put it out there. See what 
happens. 

And then we're like, “Well, okay, like why are you collecting so many specs?” Because, really, it 
sounds like a spec is something you want like once. People are like, “No. No. No. We want 
specs like every time we check in our code.” And so we're like, “Well, on the one hand, that 
makes sense, but like what are you really trying to do?” And what we got from that was people 
are like, “Well, we want to diff those specs.” But then they showed us how they are diffing with 
specs right now. And they're like, “This is bad. Like this makes no sense. Like this diff is so 
noisy.” And we're like, “Okay.”

So then we caught on to the fact that people seem to want specs for regressions and they 
wanted something. But what we were doing wasn't there yet. So then we surveyed more 

© 2021 Software Engineering Daily 16



SED 1257 Transcript

broadly, and people were like, “Yes, we want regressions on API behavior. But like everything 
we have is really noisy.” So then we like embarked on this very long journey of like making it 
less noisy, which I'm describing to you. Because like I think in the beginning we're like, “Oh, 
yeah, everyone is like it's simply a matter of just different specs.” And then we're like, “It's way 
not.” Like we got stuck with a timestamp issue. We got stuck with a unique ID issue. We got 
stuck with like – No one wants to see diffs of YAML files. Like I think we're lucky enough that we 
have very blunt users. They'll like call us. They'll be like, “Here, I will on video tell you like this is 
so bad.”

And so in the beginning they were like, “Look, we don't want to read a spec. Who wants to read 
the spec?” They would show us their spec and they're like, “This is terrible.” And we're like, 
“Okay, so then like why do you want us to make you the spec?” And they're like, “Well, what we 
want is like we want to know about authorizations, like bla-bla-bla-bla-bla changes.” And we're 
like, “Aha.” And so like that's how we built the visualization on top of it. And now for diffs, they're 
like look, “Like you're just dumping YAML diffs. Like you need to do all this other stuff.” So like 
that's what we've been working on. We're still iterating on that. 

But pretty much like every, like product improvement has been like at least one person like 
shows us like what they're doing on their data and they're like, “Ugh, I hate this.” And then we're 
like, “Okay.” Then they're like – Many of them are kind enough to like let us play with that data 
too. Then we like come back with something. And we're like, “Is this what you wanted more?” 
And more often than not, it has been an improvement. But I think it'll take a few more iterations 
to kind of get like the right user experience for engaging with these things at the endpoint level.

[00:37:50] JM: Tell me about the hardest part of running the company thus far.

[00:37:56] JY: So I think that for us, it's been like a collision of a non-software thing with a 
software thing, which is for Akita, it's actually been getting the right team to work on bringing 
great developer experience for an extremely technical problem. Because as you can see, we're 
like extremely user-driven, we're extremely product-driven. But like pretty much everything 
we've built has been really freaking technical. So like how do we insert like the best way into a 
Kubernetes environment while we like ideally want a daemon. We want this. We want that.” But 
like the pieces are like super, like for lack of a better word, hardcore systems engineering 

© 2021 Software Engineering Daily 17



SED 1257 Transcript

problems. But like the experience we want is like very, very clean. And so we're actually on our 
second team iteration. I think, like I mentioned, we sort of pivoted from a fuzzer. But actually 
pivoting our team has been the harder thing, which was when I first started Akita, I was like, 
“Well, I really believe in good developer experience. I should get people who are like very 
product-oriented, very user-focused, very developer-focused engineers,” and like that's what we 
had for v-zero of our team. And it turned out to not quite be the right group of people to work on 
such a gnarly, technical problem. Because I think that to work on something that requires both 
like technical innovation and like non-trivial product development. It’s not like “Hey, we're 
building like a better GDB or something, same GDB interface, better debugging.” It's sort of like 
there's on both fronts, there needs to be innovation. I think that like maybe this is like a very 
arrogant point of view. But I'm like, “Well, like innovation is innovation,” like you just innovate. 
But like getting the right people in place, you kind of like get excited about both, and they're 
charged up. So like there are people who are like, “I love product innovation, but if I have to 
innovate technically, like that makes me nervous. I don't like it. That uncertainty is not my cup of 
tea.” There're also people who they're like, “I love technical innovation, but like just fix the 
products for God's sake. Like tell me what the product is. And like I'll innovate technically.” But to 
like get the right team in place who they're like, “Yeah, like I will answer our user requests at like 
1am on a Friday night, because like I love that.” I'm not saying like people have to work 1am on 
a Friday night. But people who are like, “That's what I live for, and like I'm so excited to like, go 
and like do some like really intense like systems hacking to like make that user happy.” Like that 
is like a very rare like intersection of things. And fingers crossed, I think we finally gotten the 
team who like – It gets really excited. We're like moving fast. We’re doing this stuff. But that was 
really hard to figure out like what is the right DNA for that.

[00:40:35] JM: Any broader reflections on where you see infrastructure software going, trends 
and opportunities or problems?

[00:40:45] JY: Yeah, so there're two that I've been thinking about a lot. We’re part of both, as 
you might expect. But one is, as there's been the shift from – So like building and shipping is 
sort of like how people think about software today. Like you have dev, you have tests, then you 
ship. And even agile, just condense that cycle. But there's still this notion of building and 
shipping. But really, this has become building and running. And so like with the rise of SaaS, like 
it's a lot more complex than building and shipping. There's a lot more I'm operating software. I'm 

© 2021 Software Engineering Daily 18



SED 1257 Transcript

operating software that I didn't write. I'm operating software that I wrote in concert with software 
that I didn't write. 

And so this is where I see a lot of existing tools just kind of falling down. So like your test tools, 
they like obviously don't help you test against like Confluent, Kafka nodes or things like that. 
And then even existing observability tools, they're kind of like built from this tradition of like they 
expect that, okay, like if you can get logs, that's okay. But ideally, you like to find all these spans, 
and you like instrument your code very precisely. 

And so the thing I had gotten really into at the beginning of Akita was I had this intuition. Like 
things – Well, okay, so it was an intuition from talking to a lot of developers. But I had the sense 
that things need to be blackboxed. And it took me a couple years to realize the reason they 
need to be blackboxed, because in this shift to operating, like things are a blackbox now. That's 
why. And so I think that's a big trend. I mean, I think that something I had a lot of trouble 
explaining to people, because I come from like a static analysis, dynamic analysis background, 
like you instrument, you have access to everything. People are like, “Jean, like what the heck 
are you doing now?” And like the technical way I describe it now is I'm traditionally like an expert 
right of spec and the other tools analyze against it. I think if things are blackboxed, what you 
really want especially – Yeah, what you really want if things are blackboxed is you infer the 
specs by watching. And then you like either show the results to experts. Or better yet, you just 
detect deviations. I think regressions are extremely powerful if you don't know the spec. 

And so as things shift to being out of the control of the developer, or you don't know the spec, 
you can't look inside, I think like this is both in terms of the product landscape and in terms of 
technologies, I think that the kind of thing that I'm talking about is going to become more and 
more important. 

And then the second thing is something I tweeted about yesterday. I've been thinking about it a 
lot. Is a lot of developer tools that have been successful so far have been what I'll call 
simplifying or abstraction tools. So it's Stripe-like payments. They're really hard. So we'll just 
abstract them away from you. Or EC2, or managing the cloud, managing a data center is really 
hard. So we'll just abstract that away from you. That can only get you to a certain point. And so I 
think that we've reached the point where like – I think Liz Fong-Jones tweeted AI ops is trying to 

© 2021 Software Engineering Daily 19



SED 1257 Transcript

be a simplifying tool when they're actually a complexity and racing tool. So I had this tweet 
where I said, “Look, like there're really two kinds of dev tools; abstraction, simplifying tools and 
like tools where you just have to sit with the complexity.” So the classical example is like a 
debugger. Like your debugger can't just like – You can’t have like push button, like I find the bug 
for you, right? Like the whole point of the debugger is it lets you explore your system. And I think 
that like most of the tools for distributed programming up to now have been simplifying tools. 
They're like, “We’ll abstract away your cloud. We’ll abstract away your infrastructure. We’ll will 
abstract away this, that, the other.” And I think that like what this latest generation of 
observability tools has been about is like, “Look, you cannot always abstract away. You need to 
look inside sometimes.” And I think that's going to become more and more important. Like I 
hope people realize that they can't have like silver bullet abstract away for everything. Now that 
all systems are distributed systems, we actually need better ways of engaging with them. And 
so I think that's a trend that I've seen start. I hope it gains a lot of momentum, because I think 
that we can't just keep abstracting our problems away forever. 

[00:44:41] JM: Cool, great answer. That sounds like a good place to close off. Jean. Thanks for 
coming on the show. It's been a real pleasure talking to you.

[00:44:46] JY: Cool, thanks.

[END]

© 2021 Software Engineering Daily 20


