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[INTRODUCTION]

[0:00:00.3] JM: Machine learning frameworks like Torch and Tensorflow have made the job of a 

machine learning engineer much easier. Machine learning is still hard. Debugging a machine 
learning model is a slow, messy process. A bug in a machine learning model does not always 

mean a complete failure. Your model can continue to deliver usable results even in the presence 
of a mistaken implementation. 

Perhaps you made a mistake when cleaning your data, leading to an incorrectly trained model. 

It’s a general rule in computer science that partial failures are harder to fix than complete 
failures.  In this episode, Zayd Enam describes the different dimensions on which a machine 

learning model can develop an error. Zayd is a machine learning researcher at the Stanford A.I 
Lab. So I also asked him about A.I. risk, job displacement, and academia versus industry.

[SPONSOR MESSAGE]

[0:01:02.3] JM: Simplify continuous delivery with GoCD, the on-premise, open source, 

continuous delivery tool by ThoughtWorks. With GoCD, you can easily model complex 
deployment workflows using pipelines, and you can visualize them end to end with its value 

stream map. You get complete visibility into and control of your company’s deployments. 

At gocd.io/sedaily, you can find out how to bring continuous delivery to your teams. Say 
goodbye to deployment panic and hello to consistent, predictable deliveries. Visit gocd.io/

sedaily to learn more about GoCD. Commercial support and enterprise add-ons, including 
disaster recovery, are available. 

Thank you to GoCD and thank you to ThoughtWorks. I’m a huge fan of ThoughtWorks and their 

products including GoCD, and we’re fans of continuous delivery. Check out gocd.io.sedaily.

[INTERVIEW]

© 2017 Software Engineering Daily �1



SED 308 Transcript

[0:02:14.4] JM: Zayd Enam is a machine learning researcher at the Stanford A.I Lab. Zayd, 

welcome to Software Engineering Daily.

[0:02:21.0] ZE: Thanks for having me, Jeff. 

[0:02:22.4] JM: Today we’re talking about why machine learning is hard and in what ways it is 
hard. 

[0:02:26.9] ZE: Yeah.

[0:02:27.4] JM: Let’s start more optimistically. What are the fundamental trends that have led us 

into such massive growth in terms of the adoption and the viability of machine learning today?

[0:02:39.9] ZE: Increasingly, we’re seeing the value of machine learning algorithms as we’ve 
been able to build computers and processors that can process large amounts of data. We’re 

seeing increased value in this idea of collecting, or having the computer figure out what to do 
from large sets of data. Identifying patterns in large sets of data as opposed to codifying 

individual roles in order to be able to do a task.

[0:03:06.5] JM: There’s also, obviously, lots of new frameworks, and cloud services that make 
this a lot easier, and we can get into that stuff. To get to some of your editorial that you wrote 

about why machine learning is hard — it’s a very interesting article that I’ll put in the show notes 
— you write about the difference between software development and machine learning. Could 

you outline some of the points that you make that lead you to that conclusion? 

[0:03:33.2] ZE: I think, fundamentally, the distinction between software development and 
machine learning is that you have increased dimensions of complexity that you deal with. The 

way I think of a complexity is complexity doesn’t scale linearly with every dimension. It scales in 
the size of geometric volume. 

With software development and with a lot of different software development, you have increased 

complexity because of different dimensions. If you looking at just basic software development 
compare it to basic machine learning, in software development, what I sort of see as you’re 
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writing a simple program, a standard simple Python program, maybe a Script, maybe you’re 

writing something simple on your computer, you associate an algorithmic complexity that you’re 
dealing with than an implementation complexity. 

The algorithmic complexity you’re dealing with is like the actual algorithm that you’re writing for 

your data structure, the actual way you’re processing your data. The implementation complexity 
is the actual implementation of that algorithm in your code. Each one of these dimensions is 

prone to a bug. They’re prone to sort of you not thinking through correctly what the right way to 
do this, the implementation thing. Maybe you’re not using the right API calls, or you’re not using 

the right data structures for whatever library you’re using. There are all kinds of little things on 
the algorithm side, you’re not thinking through the algorithm. I have an example of recursive 

algorithm that I’m just not thinking through the base code correctly. 

Those are a lot of different ways that you can get them wrong. With machine learning, even the 
most basic machine learning, you would still have those two issues, where you’re still having 

issues which are algorithm and you’re having issues which are implementation. All of a sudden, 
you have two new dimensions to deal with. These two new dimensions are the complexity of 

your model. The complexity of your model is, basically, you’re trying to model something about 
the world. You’re trying to model whether you think it’s going to rain tomorrow or not, and that’s 

based on a lot of different features and the prediction can be based on a lot of different things. 

You also have complexity in your data, and your data complexity is this complexity of often times 
a data that we get to be able to train our machine learning algorithms, is really messy. It’s not in 

a clean format. It’s not in a format that we can easily sort of plug into a model and get it to train 
and work well. You have to do a lot of preprocessing of this data and you have to do a lot of 

munging and these kinds of things. 

Even for the most basic things, when you add these two dimensions of complexity, it becomes 
sort of a lot more of sort of volume in your head. The way I think about this is it’s like 

development volume, or complexity volume. As a developer, you can only sort of fit a certain 
amount of volume in your head. I can, while I’m writing code, or while I’m sort of tweaking an 

algorithm, or start trying out a new research experiment, I can only deal with a certain fixed 
amount of volume. 
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In order for me to be able to deal with that kind of volume, I’ll try to completely not think about 
the implementation and just like take that as a given and then just think about how I’m going to 

sort of fix the model, or I’ll try to not think about the data and then fix one particular dimension 
and then try to think about the other three dimensions. It becomes a challenge of managing this 

volume in your head.

[0:06:41.5] JM: I think you’re getting at a number of things. You’re getting at the problem of the 
data munging process where you’ve got to clean your data and you can make a mistake in the 

data cleaning process and that can lead to erroneous inputs. You also have this partial failure 
scenario where you can have a model that does a pretty good job, but it’s not optimal. Maybe 

you’re at a local minima and you could have all these problems that are almost subjective. It’s 
like you can have a model that partially works. 

Machine learning, it’s a hard problem because getting algorithms and models to work well is not 

like just standing up a web app and having some transactional service available. You have to 
apply creativity, experimentation, and tenacity. Machine learning is it’s a lot less straightforward 

than other types of software development. 

You describe an intuition that a machine learning program has to develop. How does that 
intuition manifest, and why is it a prerequisite for being a machine learning developer?  

[0:07:51.0] ZE: You hit the nail on the head and it’s exactly, I think, for the reason that you 

described, and the reason is that machine learning, it’s hard to know when you — You don’t 
have quite the same binary measure of success. It’s not like you’ve immediately succeeded. 

There are a lot of little signals that you need to sort of get back from your algorithm and in the 
process of development. These little signals guide you in the direction of what you should be 

doing. 

You don’t know quite a priority what the right model is for your data. You don’t know quite a 
priority what the right processing is for your data. You can’t sit back and sort of write down a set 

of rules that this is exactly what I need to do. When you’re training these systems, especially 
with these really, as you get to larger scale deep learning systems, there’s certain rules of 
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thumb, but there’s always something that doesn’t work. Something that doesn’t work is often 

because there’s a lot of different reasons why something doesn’t work, and these systems, they 
don’t exactly tell you why it’s not working. 

When you have a lot of different dimensions along where something doesn’t work, you need to 

be able to develop this intuition for, “Okay. I’m seeing this particular behavior that this model is 
telling me, or this algorithm is telling me. I need to tie it back in to what I think, of all the three or 

four dimensions I’m thinking about right now, where is this problem?” 

[0:09:03.3] JM: Yeah. “The difficulty is that machine learning is a fundamentally hard debugging 
problem.” This is a quote from your blog post, Why Machine Learning is Hard. What makes 

machine learning code so much harder to debug the normal code? What’s so peculiar about it?

[0:09:22.8] ZE: In machine learning, or with machine learning code, the complexity often is 
when you’re debugging this code, you’re not just debugging the deterministic algorithm. You’re 

not debugging, as I earlier talked about, let’s say I’m implementing a recursive algorithm. I have 
the actual recursive, the algorithmic part of the recursive algorithm, and the implementation part. 

I know in my head this is exactly what the algorithm should do. 

With machine learning code, you have a particular algorithm that trains your model. That might 
be a gradient descent based method, that might be a way of learning a decision tree, some kind 

of algorithm. You also have implementation, which is writing down the actual code for that 
particular algorithm. 

You still have that same level of complexity in those two aspects. Now, on top of that, there are 

these other dimensions of complexity, which is the model and data that come into play with both 
the algorithm and with that implementation. When you combine all those together, it becomes 

much more complicated to try to debug something when things aren’t going right and things 
aren’t working perfectly.

[0:10:30.5] JM: As you write, there is a number of different axes that a bug can manifest within 

in this machine learning pipeline. Describe those other axes is more detail, because in normal 
programming, if I’m just building a Ruby on Rails web app, it’s often a little more binary. You’ve 
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got a bug and that bug manifests an external error and it’s very clear cut that’s an error. These 

axes that you described in machine learning add a much more gradient scenario for how errors 
can manifest. 

[0:11:08.0] ZE: Yeah. In a sense with the two additional dimensions with sort of issues with the 

model, issues at the actual data, it’s often combinations between an implementation issue and 
like a data issue that will sometimes give you huge problems. If there’s like some kind of 

particular characteristic about your data, or your model doesn’t like data in a certain format, 
because, for example, with earlier forms of unsupervised deep learning, it was very common to 

preprocess that data not just doing simple mean subtraction, these kinds of things, but people 
would do whitening and all these other transformation on the data in order to get it to get these 

actual early deep learning models to work well. 

There are all kinds of little bugs that could show up in that process. You’re not quite whitening 
your data correctly. Your model doesn’t like this form of whitening. It would prefer this thing — 

There are like some other issue with your data where — For example, with images, I was 
dealing with a dataset years ago where I was trying particular models on these big dataset 

natural images. There were issues with the actual camera processing, but the actual camera 
that was processing these natural images — The sensor that captured these images, it resulted 

in a format that when you whiten the data, it became unstable for this deep learning algorithm to 
train on — For this unsupervised deep learning algorithm to train on, and so you run into these 

kinds of little issues where your implementation, your model, your algorithm, and your data need 
to come together, just align perfectly in order for something to work perfectly.

[0:12:39.6] JM: Yeah. Although all hope is not lost, because as you say, luckily for machine 

learning, we also have more signals to figure out what went wrong. What so you mean by this? 
How does that signaling from the machine learning output lead to us improving our models?

[0:13:05.5] ZE: With machine learning algorithms, one thing that you have, the data and the 

model give you additional — They give you additional signals to try to figure out where 
something is wrong, or where you can improve things. It’s not like they sort of throw you into 

these extra dimensions of complexity without giving you extra signals and extra ways to cope 
with that complexity. 
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One of the nice things about machine learning is that you can have the model tell you — At the 
end of the day, it tries to give you some kind of answer. Whether that’s like a classification label, 

or rational label, it’s trying to give you some kind of answer. You can just basically give it a lot of 
different examples and just have it see what is the output? What is the answer that you’d give 

for these examples? 

That is a really powerful way of trying to understand where things are going wrong. It’s a basic 
way, but it’s also very powerful way, where you just look at a lot of different inputs and you see 

where is the system failing? Where are things going wrong? That’s a great place to start. 

You can then look at statistics of these kinds of — For example, what are your statistics on your 
training and test site in terms of are you overfeeding the model? These kinds of individual 

statistics are really powerful, but then, additionally, these are all at the end of the train model, 
while the model is training, it gives you upward signals in terms of its loss function, how fast the 

loss function is decreasing as it plateaued. It gives you this individual — These numbers that 
you have to sort of keep track of in order to be able to determine where the problem is, but it 

has all these different outputs.

[0:14:39.9] JM: What’s interesting about this conversation is that when you’re saying machine 
learning is hard, I think machine learning is one of the these really strong breakthrough 

innovations where it’s like the iOS platform where people all of a sudden had this incredible 
platform to start making mobile apps and it unlocked this vast amount of innovation from 

developers everywhere. You could same thing about cloud computing, you could say the same 
thing about Ruby on Rails. 

Up until I read your article, my impression was like, “This is what — Machine learning is the 

same thing. Okay, we’ve got Theano, we’ve got Torch. These things make it super easy to just 
get started with machine learning, and you get some homeruns and then — ” Are you saying 

that’s true, you do get homeruns, but you’re going to hit some diminishing returns quite quickly, 
because you’re going to start to hit these debugging problems that are really going to slow down 

your progress once you get started, or are you saying that even just to get started, even just to 
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standup a model and have it be producing reliable positive results, you’re going to need to do 

some hard work? 

[0:15:49.5] ZE: We’ve had tremendous success with frameworks like Theno, Torch, and 
TensorFlow. The reason is because the development community has sort of realized that the 

complexity of machine learning, there’s multiple dimensions of complexity you have to deal with 
that when you take away implementation complexity — What is the advantage of TensorFlow, 

Theano, and Torch? Is that you no longer have to worry about — A few years ago, every time 
you sort of coded up on your network, you’d have to worry about the most computations that 

you were doing on a GPU. You’d be implementing the actual CUDA calls to do a matrix 
operation on the GPU and you’d have to worry about the complexity, “Oh man! Did I implement 

that correctly? Did I have the right implementation with this operation? Am I copying memory 
from my host to GPU correctly? Is the memory access being done correctly?” You’d be dealing 

with all those valuable issues alongside all the other issues that you have to deal with from 
machine learning. 

What these amazing frameworks have done is that they’ve struck away all these complexities in 

a very sort of very robust strong framework. You no longer, in a sense, for implementation, you 
have — A lot of times people are doing something new, so they have to worry about the 

implementation of the new aspect that they’re doing. For a lot of the most basic operations, that 
part of the volume of complexity has been sort of taken away, because you’re not worrying 

about that in terms of —  or you’re not thinking about that sort of volume of complexity while 
you’re implementing your model. You’re free to sort of experiment in other dimensions, along the 

model dimension, or the data dimension, or exploring new algorithm dimensions. 

That’s a really powerful advancement by these frameworks. That’s what’s made it possible for 
us to make so much rapid progress. I do think that if people were still sort of writing their CUDA 

kernels for training neural networks, the field would be many, many years behind what it is right 
now.

[SPONSOR BREAK]
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[0:17:44.4] JM: When you are continuously deploying software, you need to know how your 

code changes affect user traffic around the world. Apica System helps companies with their 
end-user experience, focusing on availability and performance. Test, monitor, and optimize your 

applications with Apica System. With Apica Zebra Tester, Apica Load Test, and Apica Synthetic, 
you can ensure that your apps and APIs work for all your users at any time around the world. 

Apica Zebra Tester provides local load testing for individuals, small teams, and enterprise 

DevOps teams to get started quickly and scale load testing as your needs evolve. Apica Laod 
Test ensures that your app can serve traffic even under high load. Apica Synthetic sends traffic 

to your website and your API endpoints from more than 80 different countries, ensuring wide 
coverage. 

Right now, you can go to softwareengineeringdaily.com/apica for a webinar about the real ROI 

of API testing. You can also find past webinars, just how to optimize websites for fast load time. 
Go to softwareengineeringdaily.com/apica to find the latest webinars on load testing and lots of 

other topics, and check out Apica System for testing, monitoring, and optimization. 

Thanks again to Apica for being a sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[0:19:14.4] JM: Now, is there more low-hanging fruit in terms of making the procedure of a 
machine learning developer more streamlined and more error-free, or machine learning is 

heard? Is that the epitome of some wall that we’ve hit on the free lunches, and now it’s just 
going to be — There is going to be a lot of in the trenches work?

[0:19:43.2] ZE: Absolutely. I think there’s a lot of work that can still be done to decrease the 

complexity of sort of building these kinds of systems. What I think here is there are a few 
fundamental tensions that happen over here. One of the fundamental tensions is that there’s 

always this sort of push for higher performance. One of the biggest ways to get higher 
performance is to increase the size. Right now, what we’ve been seeing for a very long time is 

that the most simplest way and the most reliable way to get better performance on an algorithm 
is by increasing the size of the dataset. That increases your sort of requirements for 
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computation. That increases the complexity of the data, and increases the requirements for 

computation. 

Because of this increased requirements, increased push on computation, you sort of get in 
realms where maybe you can’t do your processing on a single node anymore, you need multiple 

nodes. If we take an example from an algorithm from the 90’s, I could just brute force all the 
parameters for the algorithm right now probably on my laptop and not have to worry, just have a 

simple auto-script that basically checks everything, does every single possible combination and 
gives me a reasonable result in a very short amount of time.

But it’s usually once you to start pushing on the sort of limits of performance, you have to 

increasingly move towards more and more, higher and higher compute. Because of that, it 
naturally becomes more difficult to manage those kind of systems, because now it’s no longer 

easy to run that kind of algorithm multiple times. Say, you wanted to do a hyperparameter 
search for a new fancy algorithm, if that algorithm by itself is so large and requires so many 

flops for one run, it’s hard to be able to tune those hyperparameters without some kind of better 
way than just like brute forcing everything. 

[0:21:34.6] JM: Can you give me an example of some different bugs that you have encountered 

yourself in this definition of a bug that you classify in machine learning where it’s like you have 
this broad, gradient, different types of bugs that are more subjective, perhaps. Give me, maybe, 

an example of one that you’ve encountered and how you walked through it.

[0:21:57.8] ZE: Sure. I think early on, one of the interesting bugs I spent a little bit of time on 
was I was — Usually, when you are looking at loss functions, when you’re training your 

algorithm, you expect sort of this really quick decay and it sort of shallows out overtime. The 
algorithm, it gets really good pretty quickly, and then overtime it’s getting better, but it’s getting 

better slowly. 

It was just interesting for me to see this loss function where you’d expect getting better and 
better overtime, it was periodic. In the sense that it would go up and down in a very patterned 

way. In retrospect, it seems so obvious now there was obviously some kind of issue in the way I 
was ordering the data when I was training this model, or this particular model with a iterative 

© 2017 Software Engineering Daily �10



SED 308 Transcript

algorithms. So it would take a small batch of data, crosses that data, learn from those examples, 

and then take another batch. 

In retrospect, it seems pretty obvious there was some kind of periodicity in the way I was 
loading up data into these models. It was just like — I had never seen sort of a sine wave for a 

loss function ever before, and it just like struck me as like really odd. But I’ve seen this now a 
few times when I’m helping out other people debug their models, or figure out what’s going on 

where there’s an issue where you are not shuffling the data correctly, and results in these 
periodic loss functions. 

That’s an example of where ordering of the data really matters and you need to randomize 

ordering. Otherwise, it learns patterns from the actual ordering of the data as opposed to you 
don’t want it to be learning those patterns. You want it to be sort of getting this data randomly.

[0:23:34.2] JM: What’s the tooling around this? Is it more you are just writing stuff and then you 

see output in a graph somehow and then you say, “Okay, now it’s back to the drawing board?”

[0:23:44.9] ZE: Well, that’s what it predominantly was a few years ago. You were basically 
writing everything from all the code to do the operations in the GPUs, to the code, to load up the 

data, to the code, to plot these lost functions, and plot the statistics of your data, and plot error 
examples and these kinds of things, which made it such an unwieldy process.

Now, with tools like TensorFlor, and Theano, it becomes — With Theano, you have certain 

plugins that makes it much easier to process these kinds of errors. What it ends up being now 
with the modern day framework is that you’re writing, basically, summary statistics to a particular 

web view or some kind of log and you can basically sort of look at this graphically in your 
browser and it will immediately give you a signal that something is off.

[0:24:35.7] JM: You’re describing this delayed debugging cycle that you write about, which 

aggravates the debugging challenge that’s already difficult. Why is that debugging cycle longer? 
I think by debugging, they mean, typically, somebody developing a web app, they just save their 

code, refresh the page, notice the next bug, solve it, rinse and repeat. That is not how things 
proceed in machine learning.
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[0:25:04.4] ZE: Yeah, man. I’m so jealous of web developers. I got back into web development, 
maybe, a few months ago, and it’s just so nice. You just write something and your page — Your 

browser is — 

[0:25:17.1] JM: Like painting a picture.

[0:25:17.9] ZE: Yeah, you see it immediately, and you get this immediate visual feedback. 
You’re sort of laying out stuff in CSS and you get this beautiful feedback, immediate visual 

feedback of what you’re doing. If you’re doing front-end stuff, you’re doing back-end stuff. It’s a 
very quick cycle. The page refreshes and you immediately see what the results of your work 

were. 

I think that’s a really powerful — This kind of cycle of the work you put into seeing the immediate 
result of that, that’s a really powerful learning cycle, because, in a sense, it’s like this problem of 

when you’re trying to figure out what to do in a situation. If you get an immediate feedback on 
what exactly — Whether this was a good thing to do or not good thing to do, but that’s really a 

fast way to learn about things, because then you can experiment with a lot of different things 
and sort of play around with a lot of different knobs and get a good feel for what works and what 

is the fundamental principle that will push progress forward?

The thing is — What I was talking about before is that when we’re pushing for higher 
performance, it results us in pushing the limits of computation, we have these delays in hours to 

train these algorithms just because we’re trying to hit the fundamental limits of what is the 
current state of the art for the forms of this algorithm? That process takes hours, if not days, if 

not weeks to train that algorithm to that level. 

What the issue becomes is that you run an experiment to test out a particular hypothesis that 
you have and you have to sit and wait for that the results of that experiment to come in for days, 

or hours, or for a long period of time before finally get a learning signal yourself where you can 
feed that back in and say, “Okay, when I sort of change from this kind of gradient descent 

method to another gradient descent method, this is the behavior I see, and this is the 
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performance that we get.” That delayed learning cycle sort of really slows down progress in the 

field. It slows down progress in the field and slows down progress in development.

If you were able to sort of shrink that delay to sort of a much smaller delay, I think we’d see a lot, 
lot faster progress. In a sense, machine learning as a field, especially since the big players, a lot 

of industries have industrial players that have come to this space, you’ll notice that the field has 
been doing a lot of, in a sense, hyperparameter optimization with lots and lots of machine 

learning researchers. There’s a particular architecture and there’s a lot of people exploring 
different ways they can twit a knob and they add small little thing to the algorithm in order to 

improve performance on a benchmarking dataset.

In a sense, this is like an example of — It’s the result of the fact that doing these kinds of 
computations takes such a long time. It was possible for a person to just sort of run all these 

experiments and get the results for them really quickly, then we’d not spend a year in this 
process for these multiple research groups doing hyparameter. In sense, what is essential, 

becomes hyperparameter optimization on an algorithm in order to comeback to this solution 
where every community decides, “Okay. This is the way that seems like a convolutional neural 

network should — These are the parameters for a convolutional neural network that seemed to 
work well in practice.” 

[0:28:25.7] JM: Are we going to get there at some point? Are we going to shorten those 

debugging cycles significantly? 

[0:28:31.1] ZE: I think this comes back to exact same tension between computation and 
performance.

[0:28:34.8] JM: Same thing. Okay. 

[0:28:35.8] ZE: Yeah.

[0:28:36.1] JM: Right.
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[0:28:36.4] ZE: It’s like whenever you try to push on performance, you always going to require 

more from your computation. We get to this level where we’re talking, for example, if we wanted 
to build a human-level intelligence, you can’t really shoot for a computer that has exactly the 

same number of operations as the brain, because even if I wanted to build a computer that had 
the same number of operations that the brain has in terms of number of neurons, number of 

action potentials, and synapsis between all the connections between the neurons in the brain, it 
would still be such a long process to iterate over all the possible ways you could build a brain. 

That really, you need to be shooting for a few order of magnitude bigger than the brain, and you 

need those few orders of magnitude faster or bigger than the brain of computation in order to be 
able to do this like, in a sense, what becomes a hyperparameter search. Where you have this 

ability to quickly test out different experiments at the scale of the brain and basically run a lot of 
them in a reasonable amount of time. Then, you’ll be in that process that you’ll learn, “Okay. 

These are the models that work. There are the hyperparameters that work, and this is how we 
build a brain.” 

[0:29:44.0] JM: You did study neuroscience. How does that drive your interest in machine 

learning? 

[0:29:52.0] ZE: I actually got fascinated early on by the brain, and it was predominantly the 
brain that I was super, super fascinated in. Sort of — I found this like motley groups of folks at 

my undergraduate where they’re doing amazing work at, basically, intersection of neuroscience, 
machine learning, math, and sort of understanding the fundamental principles of computation of 

the brain, and that sort of what drew me into this interdisciplinary field of trying to understand the 
actual computational principles of the brain through the tools of mathematics and through the 

tools of machine learning and statistics.

Increasingly, I think machine learning, or progress in machine learning as a field, progress in 
machine learning hardware, and progress in machine learning algorithms is increasingly 

pushing us towards this direction where I don’t think we’re going to be able to exactly build a 
brain, but we are sort of unearthing fundamental principles about the brain that seem to be 

reflected as fundamental principles that are important for intelligence. 
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[0:30:53.5] JM: Right. I totally agree with you, where, basically, there’s some set of satisfactory 

primitives that you need to build, what is effectively, a brain. What is effectively as something 
that as as powerful as the human brain. We can get to those — Whatever those axiomatic 

things are, we can get to something that is equivalent to them through just hacking on machine 
learning, basically the thing that we’re doing right now. That’s what’s so exciting right now. 

What’s so exciting about all these is like through, basically, brute force, we’re just going to get 
there. 

[0:31:30.6] ZE: Yeah, and it’s going to be great.  

[0:31:33.4] JM: It’s going to be great. It’s going to be very cool. Okay. This gets us into more 

interesting conversations, not that machine learning debugging is uninteresting. It gets us into 
more speculative conversations, perhaps I should say. 

There’s the neural lace idea that obviously we should be covering, this idea that, basically, in 

order to — well for whatever reason you want to make a neural lace. It’s like the interface 
between the brain and our computers that Elon Musk suggests building in that Recode 

interview. He was suggesting it as a response to averting A.I risk, basically, because if you use a 
human brain as a springboard — If I understand his theory correctly, you use the human brain 

as a springboard so it sorts of prevents, or keeps our interests aligned with the AI, or something.

[0:32:24.6] ZE: Yeah. I’ve sort of seen these comments that I think people in the actual field 
always have a laugh about them. Whenever a comment like that comes up, it just feels like — 

To me, I think, about this particular thing, it’s just like Elon is an expert in particular fields and 
he’s done remarkably well and has a really deep insight in these kinds of things that he’s truly 

excelled at. 

Just because one person is an expert, like if you look at Ben Carson, super, super highly 
specialized neurosurgeon. It doesn’t necessarily mean that his economic views are great, or are 

very sophisticated. I’m not exactly sure about combining about this fear about this A.I. that we 
have to watch our backs for, watch out for.

[0:33:14.9] JM: You’re one of the anti-fearests.
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[0:33:16.1] ZE: Yeah, most definitely. I don’t think that we have to fear future A.I.

[0:33:21.5] JM: Even if it’s tail risk, isn’t that like worth considering?

[0:33:27.0] ZE: The really, really probability that we have tail risk, I think we have the potential 
for a lot of safeguards when we’re building these systems, that there’s ways to sort of build 

structures around — Build safeguard instructions around these kinds of systems, and much in 
the same way that we build structures and systems around humans in order to control their 

power.

If you look at, say, our new president, we have a government which has a structure system that 
limits the amount of stuff they can do with immigration, that limits the amount of power he has. 

There are same ways that developers of A.I. have maybe even more powers of controlling these 
kinds of things.

[0:34:06.5] JM: I agree with you in theory, but it will be interesting to see what happens in 

practice, because, basically, the narrative around this right now is you’ve got the Bostrom 
people who are like, “Okay, we need to worry that if we optimize a machine learning based 

factory, maybe, with nano machines that are doing the construction of something to make 
paperclips, that this machine learning based factory will optimize for making paperclips so much 

that it turns every human in the world into paperclips, because it’s just like, “We got to produces 
many paperclips as possible at all costs.” 

The reason this idea is compelling is because we’re in this industrial race to have the most 

sophisticated flexible machine learning. Even if we just look at like Alexa versus Google Home, 
it’s difficult to imagine these companies restraining themselves. I think it’s sort of like asking the 

oil companies to start talking about global warming, or climate change, in more realistic terms. 
They’re not going to do it. 

Right now, obviously, we’re at a point where there’s not really a significant risk, our machine 

learning systems are still so infantile. But just looking at where we are today and like yeah, 
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maybe open A.I. will do something, but it’s seems like we’re going to be very exposed to 

whatever tail risk there is. 

[0:35:32.7] ZE: I think one place where we’ve seen this for sure is — And I think what happens 
is when you have economic incentives to optimize a gray area — If you look at Facebook, and 

Twitter, and social media in 2017, they’ve become so effective about optimizing their reward 
cycles about optimizing their — 

[0:35:53.3] JM: Engagement.

[0:35:54.2] ZE: Engagement. That they’ve essentially fractured modern attention spans. 

[0:35:59.8] JM: Yeah.

[0:36:00.4] ZE: My generation, generations like — If you look at the attention span for people 

when you’re using social media, it’s fractured, your day is fractured, your sort of thinking is 
fractured. You’re always being interrupted. You have to pull away from all that in order to 

actually do any kind of deep work if you’re trying to sort of focus on something. I think that’s an 
example of where — It’s an example of this process. 

We wouldn’t necessarily call it machine learning, but in a sense, it is this iterative process where 

there was some economic signal, and a lot of engineering effort went into sort of optimizing 
these applications and these websites to sort of become really, really good at sort of getting 

engagement, and sort of pushing on, “How we get people to sort of pay attention to us and 
focus on us?” To this point where it’s become a very major part of a person’s day to now sort of 

spend time on social media. 

Even if there’s like these massive economic incentives and we see these kinds of iterative 
process where people’s attention is being sort of pulled away from them, there is still, in a 

sense, like fundamental limits to what can be done there. There’s still, in a sense, you have this 
iterative process, and increasingly people are spending more and time. It’s not like we’re going 

to come to this end goal where eventually we’re going to be spending all of our time on 
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Facebook, all of our time on social media, or somehow we’re like sort of sucked into this 

entirely. 

In a sense, I think the same thing is going to happen with machine learning, is that we’re going 
to have — What the bigger issue is that we’re going to have — We have this iterative process 

right now, we’re increasingly realizing that a lot of the work that’s being done in the 21st century 
is increasingly doable by machines, doable by machines plus humans, and we’re doing these 

multiple passes. 

We started in industrial evolution with farm work, then we started automating a way a lot of sort 
of basic repetitive work and we’re doing increasingly more and more. We’re starting to automate 

away more knowledge-based work. We’re doing these multiple passes, but I think we’re not 
necessarily going to hit this point where everything is going to be automatable. 

[SPONSOR BREAK]

[0:38:10.5] JM: Couchbase is a NoSQL database that powers digital businesses. Developers 

around the world choose Couchbase for its advantages in data model flexibility, elastic 
scalability, performance, and 24 by 365 availability to both enterprise web, mobile and IoT 

applications. The Couchbase platform includes Couchbase, Couchbase Lite, which is the first 
mobile NoSQL database, and Couchbase Sync Gateway. 

Couchbase is designed for global deployments with configurable cross data center replication to 

increase data locality and availability. Running Couchbase in containers on Docker, Kubernetes, 
Mesos, or Red Had OpenShift is easy, and at developer.couchbase.com, you could find tutorials 

on how to build-out your Couchbase deployment. All Couchbase products are open source 
projects. 

Couchbase customers include industry leaders, like AOL, Amadeus, AT&T, Cisco, Comcast, 

Concur, Disney, Dixons, eBay, General Electric, Marriott, Neiman Marcus, PayPal, Ryanair, 
Rakuten/Viber, Tesco, Verizon, Wells Fargo, as well as hundreds of other household names. 
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Thanks to Couchbase for being a new sponsor of Software Engineering Daily. We really 

appreciate it.

[INTERVIEW CONTINUED]

[0:39:39.5] JM: Let’s zoom out. You are working in the Stanford A.I. Lab, and you described 
your interests as being focused on high-risk projects. What is a high-risk project in your mind?

[0:39:54.2] ZE: Fundamentally, a high-risk project is something where it’s a high-risk. For me, 

it’s something where you’re not — There’s a small chance, I think, small chance of things 
working out, of things sort of coming together and everything aligning together in order for this 

— 

[0:40:10.2] JM: Low probability, high upside.

[0:40:12.0] ZE: Yeah, exactly. It’s kind a project where it sounds a little crazy when you talk 
about it, so you don’t necessarily talk about it publicly, but you work on it, and when you 

something to show for it, then you come back and you say, “That was a crazy idea, but we 
pulled it off.” 

[0:40:28.0] JM: Could you give me an example? When you talk to the public, do you speak 

more modestly, or, “Yeah, I’m optimizing models.”

[0:40:35.1] ZE: I’m doing a lot of debugging. There was some recent great work out of the lab. 
It’s on the cover of Nature this week, which was doing skin cancer detection using sort of a real 

big convolutional neural network. Essentially, what it turns out is that — this is a work from 
colleagues in my lab. It turns out, if you drain a big neural network on 100,000 images of skin 

cancer, these are images that are just collected from Google and you just scrape Google for 
images of skin cancer. You could match performance of these amazing Stanford dermatologists 

just by having a simple algorithms see lots and lots of examples. 

[0:41:12.2] JM: How much of that is the headline? How much of that is it like, “Well, there are 
these certain situations where, or many situations where the algorithm would have not have 
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recognized it, because it’s some weird edge case.” Does that not happen? Are the algorithms 

good enough at this point where, like, even the edge — Because, I mean, the narrative for a 
while was, and I remember talking to Oren Etzioni from the A.I. Lab, the Paul Allen’s A.I. Lab, 

and what he said was — and we had a lot of conversations, “Oh, it’s like the centaur chest. 
Basically, you’ve got the human working together with the computer, and the human can identify 

edge cases, and the computer can identify things that the algorithm specializes in.” 

I guess, what I’m wondering is, was the determination from the test that, “Yeah, we really don’t 
need the human anymore.” 

[0:42:08.2] ZE: No. I don’t think that was the goal of the — Sort of at that, and we’re definitely 

not at that state where the human is redundant. I think, fundamentally, what this kind of 
technology allows — The power of this kind of technology is that it allows the ability to scale sort 

of the quality of healthcare that we have with sort of the experiments that was done in Stanford 
dermatologists. You can now scale this across the world in communities that don’t have access 

to, say, an amazing Stanford dermatologist. If you can match a performance, it gives you this 
ability to scale beyond sort of these restricted communities. 

[0:42:45.8] JM: Of course! These medical testing costs are so onerous. 

[0:42:49.3] ZE: Yeah, they’re very, very expensive. It’s because you have sort of a really highly 

paid doctor, essentially. There’s an interesting paper where this fantastic work where they show 
they you can train a pigeon to detect breast cancer with about 100%, or close to 100% 

accuracy. You just feed it. You have this reward cycle where you set up where you feed it when 
it makes a correct answer, and it has to choose whether something is cancerous or not. It’s 

amazing — 

[0:43:14.0] JM: You’re kidding me. 

[0:43:14.7] ZE: No, I’m not.

[0:43:15.3] JM: It sounds like a joke. 

© 2017 Software Engineering Daily �20



SED 308 Transcript

[0:43:16.1] ZE: No. It’s absolutely true. It’s a peer reviewed study. It’s actually pretty cool. 

Fundamentally, what’s happening here is that you have, basically, the basic pattern recognition 
happening here, and you have this really highly trained, amazing doctor who has gone through 

four years of medical school, has gone through residencies, and all these things, and has a 
much more broader skill set than just being able to look at a picture of a mole and determine 

whether it’s cancerous or benign.

When you sort of take that sort of really broad skill set and have it do one thing, that one 
particular narrow thing, it turns out you could take a random grad student and have them look at 

a lot of images of skin cancer and perform close to that level, just because a lot of that 
terminology, it turns out you can just take a neural network and train it in a lot of images and it 

will perform close to that level. 

[0:44:05.4] JM: Yeah, okay. Humans needs to specialize more. I got a couple of more 
questions. Ongoing conversation I’ve had with some of the guests recently. How we get to 

general A.I., or what it will look like when we get there, and sort of the dichotomy between 
narrow A.I. and general A.I., because the narrow A.I., we could classify — I think Google 

Homes. This is like the perfect example for this. You look at Google Home and like, is it narrow 
A.I. or is it general A.I.? If it’s not — It certainly doesn’t seem narrow, it can do tons of things for 

you, but it certainly doesn’t seem general, because general is what we’ve classified as 
humanlike intelligence. Do you think this question is even interesting enough to discuss, or have 

you thought about it at all? 

[0:44:45.8] ZE: Yeah. I guess, for me, the perspective on this is that if you look at something 
like Google, Google Home, or look at Amazon Alexa, the question is sort of, “Do you believe it’s 

on a path towards a general intelligence?” The kinds of things that are working really well in 
machine learning right now and A.I. right now are predominantly supervised learning on large 

scale datasets. 

That’s what’s sort of driving a lot of the advancements that we’re seeing in products with 
machine learning products. My personal view — and this is a view that people in the field will 

have, other people will have opposing view — is that moving along this path is not going to lead 
to general intelligence. That’s why I wouldn’t call it general intelligence, because I can’t imagine 
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with sort of order of magnitude is more ensuring effort, sort of moving along this path resulting in 

a general intelligence. 

[0:45:32.8] JM: It’s just a smartphone, it’s a voice smartphone.

[0:45:35.4] ZE: Yeah. For me, the way I think about this is distinction between narrow A.I. 
versus general A.I., it’s not the current skill set right now, but, instead, if we were to devote 

orders of magnitude more work to this, would we hit diminishing returns? Supervised learning 
on large scale datasets is a perfect example of this, where if you look at the performance of 

these kinds of algorithms, as you increase the dataset size, the performance goes up, but in 
order for every sort of relative delta improvement and performance, you need orders of 

magnitude more data. 

Initially, a small amount of data will get you really high performance. As you, sort of keep on 
pushing on the performance metric, you need orders and orders of magnitude more data in 

order to be able to get same amounts of relative performance increases. It’s because of these 
diminishing returns that you hit this like sort of plateau, where your systems aren’t able to 

generalize in a way that you’d expect a general intelligence do.

[0:46:28.4] JM: That makes sense for me for specific verticals, like voice recognition, or 
recommending a restaurant, or whatever. But what I wonder is, once we get to the point where 

it’s ensembling these things really well, maybe there’s some creative ensembling you can do 
where you sort of get these more spontaneously generated step changes in how it gets closer to 

general A.I. Does that sound not possible? 

[0:46:56.7] ZE: Even with ensembling, I think you’ll see the same sort of behavior, this trend, 
where — 

[0:47:01.6] JM: I’m sorry. Maybe, perhaps I used the word ensembling wrong. What I meant 

was like the synergies between the different high-level models that it’s building, like, “Oh, it can 
do restaurant recommendations really well, and then it uses that with the improved voice 

recognition. Maybe that gets us a step change.”
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[0:47:17.3] ZE: Yeah. The term that you’re sort of pointing out, I think it’s absolutely — This is 

key and this is what’s going to unlock a lot of really amazing products, a lot of really amazing 
experiences in machine learning. Where to someone who’s just using this system as a user, it 

might be indistinguishable from an actual person on the other end. 

For the average user who’s using a kind of system with, as you say, ensembles and multiple 
components, and it covers pretty much all the head cases, all the major cases, and a few of the 

tail cases for, like, “This is how a person might use a system.” It will be pretty much 
indistinguishable from a human. But any kind of adversary, or any kind of person who’s like 

prodding the system to like try to determine, “Okay. Is this really human, or is this not human?” If 
you talk to a human, it’s easy to be adversarial and for me to determine whether a system is a 

computer or a human. 

You can move in directions where you increasingly find that because that sort of space that a 
computer is expected to know, is so large, because of how broadly competent humans are, that 

it’s really easy in this really, really, really large space to find a place where a system will fail. It’s 
like these kinds of individual components, these kind of ensembles might combine together to 

blanket a space, blanket most of the dimensions of intelligence that we have for humans, but it’s 
obviously really easy to find one particular area as a human to say, like, “Okay. Let me just try to 

figure out if I talk about this, or word it this particular way,” is completely not the way a human 
will respond. 

I think this is a fundamental limitation of the current ways that we’re training these kinds of 

systems. Basically, this is a very long description. What I basically say is that these kind of 
systems are really, really fantastic for most of the cases that you interact with them. The reason 

they’re not a general intelligence, is because they don’t cover all those really, really, really rare 
edge cases that an adversary might sort of try to poke and prod in order to determine whether a 

system is a general intelligence or just like a really big algorithm to train on large dataset. 

[0:49:09.3] JM: Of course, what’s weird is that it’s going to cover a superset — Not a superset. 
It’s going to cover — I forget what the set terminology is, but it’s going to cover things that a 

human could not do, but it’s still going to be able to be incapable of doing certain things that 
human can do, which is maybe why Kurt Weill believes it’s not going to be exactly resembling a 
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human, but it’s going to have humanlike creativity. Anyway, I don’t want to go down Kurt Weill’s 

route. 

Just to close off, assuming you’ve got a little more time to go over, industry versus academia is 
quite an interesting question these days with every A.I. lab being under threat of being acquired 

by Uber, or Google, or something. How is research in industry versus academia these days? 
Are there questions that industry cannot ask, because it is too basically scientific that academia 

is still is better asking questions about? Or are these basically one and the same, where the 
industries have gotten so good at long term thinking that they’re asking good enough questions 

that they might as well be academic?

[0:50:13.1] ZE: Yeah. One thing where there’s — Within academia, these people who aren’t 
working on really long term projects, which is, I think, fundamentally a mistake. I think Google, 

and Facebook, and these big industrial labs are really well-suited, because of the kind of 
resources they have to explore more medium term, large scale, really pushing the limits of 

computation. 

I think we have a few bets for like how to build a general intelligence, but I don’t think we 
necessarily like sort of — We know the path that that will lead to a general intelligence. We have 

a few bets, like, “Okay. If we move along this direction, we’ll sort of build towards a general 
intelligence, or if we move along this direction, we have the ability to build a general intelligence. 

Those are, in a sense, fundamental questions. They’re like fundamental, really long term 

questions for us to be able to answer that will lead to a general intelligence. That’s where 
academia shines. I think, right now, there’s a lot of funding to be able to pursue that kind of stuff 

within industry. You see a lot of labs thinking along those directions. 

There’s a lot of really, really fantastic work being done there. I think a lot of really great work, 
because resources give you an ability to run these experiments on a scale that isn’t really 

possible in academia. But there are a lot of fundamental questions and a lot of, in a sense, like 
experimentation and research is you have to be open to a lot of crazy ideas and you have to 

explore a lot of crazy ideas. 
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Fundamentally, as soon as you have the resources at the level of Facebook, or Google, in order 

to — You have sort of a less of ability to really tackle a crazy idea, because you need to be able 
to have some kind of progress. You have all these resources and you’re sort of pushing forward 

on something. You become more blind to those really, really out of the box, really crazy ideas, 
than you are when you have sort of more constrained resources.

I think one other thing that’s going to happen is that we see a lot — We’re in this sort of heap 

cycle of funding for these kinds of industrial labs. What my concern is, is that sort of this funding 
can be — If you look ahead 20 years from now, there will be some really visionary long thinking 

people, long thinking CEOs still funding these kinds of labs. But the amount of funding that’s 
going to happen for industrial A.I. labs is going to go down. 

You have a lot of sort of me-too funding with kind of industrial A.I. labs where a lot of people sort 

of are funding these kinds of things because everyone else is funding them. In order for 
sustained long term development, don’t think that we’re going to necessarily like see this kind of 

really, really long term investment form industrial labs. As soon as like that sort of economic 
inventive goes away, there’s only going to be a few really stars of excellence in terms of 

industrial A.I. labs, but I think a lot of it will go down. 

[0:52:54.2] JM: I hope not, because this is like the ultimate prize, and it’s essentially like — I 
have trouble fathoming that, because it’s like until we get to general — It certainly seems, right 

now, we have all the tools that we need to build general A.I., or we’re getting there. It is within 
sight. It’s crazy. If you are the company that wins that prize, congratulations, that’s the last 

invention we need. You’re pretty well-suited. 

Anyway, yeah, interesting times. Okay, Zayd, thanks for coming on the show. It’s been really 
great talking to you. I really enjoyed your article, and I look forward — I think it was your only 

blog post. I look forward to seeing more blog posts from you. 

[0:53:35.0] ZE: Yeah, you’ll see one very soon. 

[0:53:37.0] JM: Okay, great. Zayd, it’s been a pleasure. 
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[0:53:39.5] ZE: All right. It was great.

[END OF INTERVIEW]

[0:53:45.6] JM: Thanks for Symphono for sponsoring Software Engineering Daily. Symphono is 

a custom engineering shop where senior engineers tackle big tech challenges while learning 
from each other. Check it out at symphono.com/sedaily.

Thanks again, Symphono. 

[END]
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